¿Cómo se derivó esta expansión de Maclaurin? Para cada $|x|<1,$ \begin{align} \left( \frac{\arctan(x)}{1-x} \right)&=\left( \sum^{\infty}_{k=0}x^k\right)\left(\sum^{\infty}_{j=0}\dfrac{(-1)^j x^{2j+1}}{2j+1}\right)\\&= \sum^{\infty}_{k=0}\left(\sum_{j\in D_k} \dfrac{ (-1)^{j} }{2j+1}\right)x^k,\;\text{where}\; D_k=\{j\in \Bbb{N}:0\leq j\leq (k-1)/2\}.\end {align}
Aqui esta mi juicio
\begin{align} \left( \frac{\arctan(x)}{1-x} \right)&=\left( \sum^{\infty}_{k=0}x^k\right)\left(\sum^{\infty}_{j=0}\dfrac{(-1)^j x^{2j+1}}{2j+1}\right)\\&= \sum^{\infty}_{k=0}\left(\sum^{k}_{j=0} x^j\dfrac{ (-1)^{(k-j)} x^{2(k-j)+1}}{2(k-j)+1}\right),\;\text{for}\; k\in \Bbb{N}\\&\stackrel{\text{how?}}{=} \sum^{\infty}_{k=0}\left(\sum_{j\in D_k} \dfrac{ (-1)^{j} }{2j+1}\right)x^k.\end{align}