3 votos

Demostrar que el límite integral existe $\lim\limits_{t\to 0^+}\int\limits_0^1\frac{dx}{(x^4+t^4)^{1/4}}+\ln t$

Demostrar que el límite integral existe

$$\lim\limits_{t\to 0^+}\left(\int\limits_0^1\frac{dx}{(x^4+t^4)^{1/4}}+\ln t\right)$$ Intento de cambiar de variable $u=1/x$ entonces $\displaystyle\int\limits_0^1\frac{dx}{(x^4+t^4)^{1/4}}=\frac{1}{4}\int\limits_1^\infty\frac{4u^3du}{u^4(1+u^4x^4)^{1/4}}$ .

Pero no tengo idea de continuar.

4 votos

Por cada $t$ , $$I(t)=\int_0^1\frac{dx}{(x^4+t^4)^{1/4}}+\ln t=\int_0^{1/t}\frac{dx}{(x^4+1)^{1/4}}-\int_1^{1/t}\frac{dx}x$$ por lo que $$\lim_{t\to0}I(t)=\int_0^1\frac{dx}{(x^4+1)^{1/4}}-\int_1^\infty\left(\frac1x-\frac1{(x^4+1)^{1/4}}\right)dx$$

1 votos

Equivalentemente, $$\lim_{t\to0}I(t)=\int_1^\infty\frac{1+x-(x^4+1)^{1/4}}{x(x^4+1)^{1/4}}dx$$

0 votos

Parece ser más complicado que el primero.

3voto

anonymaker000010001 Puntos 165

La integral se puede resolver mediante la sustitución $u=\dfrac{\sqrt[4]{x^4+t^4}}{x}$ y algunas maniobras de álgebra para obtener el resultado general $$\lim_{t\to0^+}\frac{1}{4}\left[\ln\left(\left\vert\sqrt[4]{x^4+t^4}+x\right\vert\right)-\ln\left(\left\vert\sqrt[4]{x^4+t^4}-x\right\vert\right)-2\arctan\left(\frac{\sqrt[4]{x^4+t^4}}{x}\right)\right]\bigg\vert_{0}^{1}+\ln(t)$$ $$=\lim_{t\to0^+}\frac{1}{4}\left[\ln(\sqrt[4]{t^4+1}+1)-\ln\vert\sqrt[4]{t^4+1}-1\vert-2\arctan(\sqrt[4]{t^4+1})-\ln(t)+\ln(t)+2\cdot\frac{\pi}{2}\right]+\ln(t)$$ $$=\lim_{t\to0^+}\frac{1}{4}\left[\ln\left\vert\dfrac{\sqrt[4]{t^4+1}+1}{\sqrt[4]{t^4+1}-1}\right\vert+\frac{\pi}{2}\right]+\ln(t)=\lim_{t\to0^+}\frac{1}{4}\left[\ln\left\vert t^4\cdot\dfrac{\sqrt[4]{t^4+1}+1}{\sqrt[4]{t^4+1}-1}\right\vert\right]+\frac{\pi}{8}=\lim_{t\to0^+}\frac{1}{4}\left[\ln\left\vert \dfrac{\sqrt[4]{t^{20}+t^{16}}+t^4}{\sqrt[4]{t^4+1}-1}\right\vert\right]+\frac{\pi}{8}\to\dfrac{0}{0}\xrightarrow{\text{L'Hopital}}=\lim_{t\to0^+}\frac{1}{4}\left[\ln\left\vert \dfrac{\frac{1}{4}\left(t^{20}+t^{16}\right)^{-\frac{3}{4}}\cdot \left(20t^{19}+16t^{15}\right)+4t^3}{\frac{1}{4}\left(t^4+1\right)^{-\frac{3}{4}}\cdot 4t^3}\right\vert\right]+\frac{\pi}{8}=\lim_{t\to0^+}\frac{1}{4}\left[\ln\left\vert \dfrac{\frac{1}{4}\left(t^{20}+t^{16}\right)^{-\frac{3}{4}}\cdot \left(20t^{16}+16t^{12}\right)+4}{\left(t^4+1\right)^{-\frac{3}{4}}}\right\vert\right]+\frac{\pi}{8}=\lim_{t\to0^+}\frac{1}{4}\left[\ln\left\vert \dfrac{\frac{1}{4}\left(20t^{16}+16t^{12}\right)+4}{t^{12}}\right\vert\right]+\frac{\pi}{8}=\lim_{t\to0^+}\frac{1}{4}\left[\ln\left\vert\frac{1}{4} \left(20t^{4}+16\right)+4\right\vert\right]+\frac{\pi}{8}=\frac{1}{4}\ln(8)+\frac{\pi}{8}=\boxed{\frac{3}{4}\ln(2)+\frac{\pi}{8}}\approx0.912559467$$

Tengan en cuenta que es necesario tomar el límite $\lim\limits_{x\to 0}\arctan\left(\dfrac{\sqrt[4]{x^4+t^4} }{x}\right)=\frac{\pi}{2}$ antes del problema.

Aunque mi otra respuesta fue aceptada por este punto, me gustaría ampliar sobre la pista dada en los comentarios anteriores por @Did. Esto sólo muestra que converge, no a qué converge. Una vez que llegues al paso mostrado en esos comentarios, utiliza las comparaciones: $$0<\lim_{t\to 0}I(t)=\int_{1}^{\infty}\dfrac{1+x-(x^4+1)^{1/4}}{x(x^4+1)^{1/4}}dx<\int_{1}^{\infty}\dfrac{1+x-(x^4)^{1/4}}{x(x^4+1)^{1/4}}dx=\int_{1}^{\infty}\dfrac{1}{x(x^4+1)^{1/4}}dx<\int_{1}^{\infty}\dfrac{1}{x(x^4)^{1/4}}dx=\int_{1}^{\infty}\dfrac{1}{x^2}dx=1$$ que converge (y debería ser fácil para ti mostrar/ver/calcular eso).

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X