$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{{\rm I}\pars{m}\equiv\int_{0}^{\pi/2} {\tan\pars{x} \over 1 + m^{2}\tan^{2}\pars{x}}\,\dd x = {\ln\pars{\verts{m}} \over m^{2} - 1}:\ {\large ?}}$ .
\begin{align} {\rm I}\pars{m}& =\color{#66f}{\large\int_{0}^{\pi/2}{\sin\pars{x}\cos\pars{x}\over \cos^{2}\pars{x} + m^{2}\sin^{2}\pars{x}}\,\dd x} \\[5mm]&=\half\int_{0}^{\pi/2}{\sin\pars{2x}\over \bracks{1 + \cos\pars{2x}}/2 + m^{2}\bracks{1 - \cos\pars{2x}}/2}\,\dd x \\[5mm]&=\int_{0}^{\pi/2}{\sin\pars{2x}\over 1 + m^{2} + \pars{1 - m^{2}}\cos\pars{2x}}\,\dd x \\[5mm]&=\left.{\ln\pars{1 + m^{2} + \bracks{1 - m^{2}}\cos\pars{2x}}\over -2\pars{1 - m^{2}}} \right\vert_{\, x\ =\ 0}^{\, x\ =\ \pi/2} \\[5mm]&={\ln\pars{2m^{2}} - \ln\pars{2}\over 2\pars{m^{2} - 1}} =\color{#66f}{\large{\ln\pars{\verts{m}} \over m^{2} - 1}} \end{align}
0 votos
La sustitución $\arctan(y)=x$ simplifica mucho la primera integral...
0 votos
De hecho, el resultado es $$ {\ln\left(\,\left\vert\, m\,\right\vert\,\right) \over m^{2} - 1} $$