$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert #1 \right\vert}%
\newcommand{\yy}{\Longleftrightarrow}$
$\ds{{\cal J}\pars{\alpha, \beta, c} \equiv \int_{0}^{\infty}{1 \over c + x}\,
{\beta^{\alpha} \over \Gamma\pars{\alpha}}\,x^{\alpha - 1}\expo{-\beta x}\,\dd x
= {\beta^{\alpha} \over \Gamma\pars{\alpha}}\,{\cal K}\pars{\alpha, \beta, c}}\etiqueta{1}$
\begin{align}
&\mbox{where}\\
{\cal K}\pars{\alpha, \beta, c}
& \equiv \int_{0}^{\infty}{x^{\alpha - 1}\expo{-\beta x} \over c + x}\,\dd x
=
\beta^{1 - \alpha}\int_{0}^{\infty}{\pars{\beta x}^{\alpha - 1}\expo{-\beta x} \over \beta x + \beta c}\,\dd\pars{\beta x}
\\[3mm]&=
\beta^{1 - \alpha}\int_{0}^{\infty}{x^{-\pars{1 - \alpha}}\expo{-x} \over x + \beta c}\,\dd x
=
\beta^{1 - \alpha}\,
{\Gamma\pars{1 - \bracks{1 - \alpha}}\Gamma\pars{1 - \alpha,\beta c}
\over
\expo{-\beta c}\pars{\beta c}^{\alpha}}
\\&\mbox{See G&R}\ {\bf 8.353}.3\,,\quad 7^{\underline{\rm a}}\ \mbox{ed. Page 900}. \\&\mbox{The result is valid whenever}\ \Re\alpha >0\ \mbox{and}\ \beta, c > 0.
\\[3mm]
{\cal K}\pars{a,b,c} &= \beta^{1 - 2\alpha}c^{-\alpha}\expo{\beta c}
\Gamma\pars{\alpha}\Gamma\pars{1 - \alpha,\beta c}
\end{align}
Sustituyendo este resultado en $\pars{1}$, encontramos:
$$
\color{#0000ff}{\large%
\int_{0}^{\infty}{x^{\alpha - 1}\expo{-\beta x} \over c + x}\,\dd x
=
\beta^{1 - \alpha}c^{-\alpha}\expo{\beta c}\Gamma\pars{1 - \alpha,\beta c}}
$$
Aviso que es un poco diferente de la OP propuesta de respuesta.