Deje que$A$ sea un grupo abeliano. Asumir que $A\otimes A=0$. ¿Implica que$A=0$?
Sé que la respuesta es sí si agregamos la suposición de que$A $ no tiene torsión.
.
Una pregunta más, relacionada con lo anterior, es si$Tor (A,A)=0$ implica que$A $ no tiene torsión.
Sé que$A $ está libre de torsión si y solo si$Tor (A,B)=0$ para todos los grupos abelianos$B $. Sin embargo, la prueba utiliza diferentes grupos$B $ y no$B=A $.