$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\bbox[5px,#ffd]{\int_{0}^{\infty}{x\cos\pars{ax} \over \sinh\pars{x}}\,\dd x = {\pi^{2} \over 4}\on{sech}^{2}\pars{\pi a \over 2}}:\ {\Large ?}.}$
\begin{align} &\bbox[5px,#ffd]{\int_{0}^{\infty}{x\cos\pars{ax} \over \sinh\pars{x}}\,\dd x} = \totald{}{a}\int_{0}^{\infty}{\sin\pars{ax} \over \sinh\pars{x}}\,\dd x \\[5mm] = &\ 2\,\totald{}{a}\Im\int_{0}^{\infty} {\expo{\ic ax} - 1 \over \expo{x} - \expo{-x}}\,\dd x \\[5mm] = &\ 2\,\totald{}{a}\Im\int_{0}^{\infty} {\expo{-\pars{1 - \ic a}x} - \expo{-x} \over 1 - \expo{-2x}} \,\dd x \\[5mm] \stackrel{2x\ \mapsto\ x}{=}\,\,\,& \totald{}{a}\Im\int_{0}^{\infty} {\expo{-\pars{1/2 - \ic a/2}x}\,\,\, - \expo{-x/2} \over 1 - \expo{-x}}\,\dd x \\[5mm] = &\ \totald{}{a}\Im\left[\int_{0}^{\infty} {\expo{-x} - \expo{-x/2} \over 1 - \expo{-x}}\,\dd x \right. \\[2mm] &\ \phantom{\totald{}{a}\Im\left[\right.} \left.-\int_{0}^{\infty} {\expo{-x} \expo{-\pars{1/2 - \ic a/2}x} \over 1 - \expo{-x}} \,\dd x\right] \\[5mm] = &\ \totald{}{a}\Im\bracks{\Psi\pars{1 \over 2} - \Psi\pars{{1 \over 2} - {a \over 2}\,\ic}} \\[5mm] = &\ \totald{}{a}\bracks{-\Psi\pars{1/2 - a\ic/2} + \Psi\pars{1/2 + a\ic/2} \over 2\ic} \\[5mm] = &\ -\,{\ic \over 2} \totald{}{a}\bracks{\pi\cot\pars{\pi\bracks{{1 \over 2} - {a \over 2}\,\ic}}} \\[5mm] = &\ -\,{\pi\,\ic \over 2} \totald{}{a}\bracks{\tan\pars{{\pi a \over 2}\,\ic}} = {\pi \over 2} \totald{}{a}\bracks{\tanh\pars{\pi a \over 2}} \\[5mm] = &\ \bbx{{\pi^{2} \over 4}\on{sech}^{2}\pars{\pi a \over 2}} \\ & \end{align}
0 votos
Escribir $\sinh x= \frac{\exp(x)-\exp(-x)}{2}$ y expandir el denominador en una serie puede ayudar.