He encontrado dos maneras de probar que \begin{align} \left|\sum^{\infty}_{k=1}\left[1-\cos\left(\dfrac{1}{k}\right)\right]\right|&\leq 2 \end{align} ¿Hay otras maneras de salir de allí, para probar esto?
MÉTODO 1
Deje $k\in \Bbb{N}$, luego
\begin{align} f:[ 0&,1]\longrightarrow \Bbb{R}\\&x \mapsto \cos\left(\dfrac{x}{k}\right) \end{align} es continua. Luego, por medio del Teorema del Valor, no existe $c\in [ 0,x]$ tales que \begin{align} \cos\left(\dfrac{x}{k}\right)-\cos\left(0\right) =-\dfrac{1}{k}\sin\left(\dfrac{c}{k}\right)\,(x-0), \end{align} lo que implica \begin{align} \left|\sum^{\infty}_{k=1}\left[1-\cos\left(\dfrac{1}{k}\right)\right]\right| &=\left|\sum^{\infty}_{k=1}\dfrac{x}{k}\sin\left(\dfrac{c}{k}\right)\right| \leq \sum^{\infty}_{k=1}\dfrac{\left|x\right|}{k}\left|\sin\left(\dfrac{c}{k}\right)\right|\leq \sum^{\infty}_{k=1}\dfrac{\left|x\right|}{k}\dfrac{\left|c\right|}{k}\\&\leq \sum^{\infty}_{k=1}\left(\dfrac{\left|x\right|}{k}\right)^2\leq \sum^{\infty}_{k=1}\dfrac{1}{k^2}=1+ \sum^{\infty}_{k=2}\dfrac{1}{k^2}\\&\leq 1+ \sum^{\infty}_{k=2}\dfrac{1}{k(k-1)}\\&= 1+ \lim\limits_{n\to\infty}\sum^{n}_{k=2}\left(\dfrac{1}{k-1}-\dfrac{1}{k}\right)\\&=1+ \lim\limits_{n\to\infty}\left(1-\dfrac{1}{n}\right)\\&=2, \end{align}
MÉTODO 2
Deje $x\in [0,1]$ se fija, entonces \begin{align} \sum^{\infty}_{k=1}\left[1-\cos\left(\dfrac{1}{k}\right)\right]&=\sum^{\infty}_{k=1}\dfrac{1}{k}\left[-k\cos\left(\dfrac{x}{k}\right)\right]^{1}_{0}=\sum^{\infty}_{k=1}\dfrac{1}{k}\int^{1}_{0}\sin\left(\dfrac{x}{k}\right)dx \\&=\sum^{\infty}_{k=1}\int^{1}_{0}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right)dx \end{align} La serie $\sum^{\infty}_{k=1}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right)$ converge uniformemente en $[0,1]$, por Weierstrass-M de la prueba, ya que \begin{align} \left|\sum^{\infty}_{k=1}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right) \right|\leq \sum^{\infty}_{k=1}\dfrac{1}{k}\left|\sin\left(\dfrac{x}{k}\right) \right|\leq \sum^{\infty}_{k=1}\dfrac{1}{k^2}. \end{align} Por lo tanto, \begin{align} \sum^{\infty}_{k=1}\left[1-\cos\left(\dfrac{1}{k}\right)\right]&=\sum^{\infty}_{k=1}\int^{1}_{0}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right)dx=\int^{1}_{0}\sum^{\infty}_{k=1}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right)dx, \end{align} y \begin{align} \left|\sum^{\infty}_{k=1}\left[1-\cos\left(\dfrac{1}{k}\right)\right]\right|&=\left|\int^{1}_{0}\sum^{\infty}_{k=1}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right)dx\right|\leq\int^{1}_{0}\sum^{\infty}_{k=1}\dfrac{1}{k}\left|\sin\left(\dfrac{x}{k}\right)\right|dx \\&\leq\int^{1}_{0}\sum^{\infty}_{k=1}\dfrac{1}{k^2}dx \\&\leq 2 \end{align}