He conseguido resolverlo de una manera, pero yo estaba muy interesado en este intento fallido.
$$ \int_0^\infty \frac{x^2 \ln(x)}{(1+x^2)^3} {\rm d}x = \int_0^\infty \frac{\ln(x)}{(1+x^2)^2} {\rm d}x - \int_0^\infty \frac{\ln(x)}{(1+x^2)^3} {\rm d}x $$
Sólo tenemos que demostrar que los dos de la derecha son iguales. Y numérico de las evaluaciones parecen sugerir que ambos son, de hecho, $-\frac{\pi}{4}$ pero no sé cómo romper estas abajo.
Actualmente estoy muy interesado en probar este $$ \int_0^\infty \frac{\ln(x)}{(1+x^2)^2} {\rm d}x = \int_0^\infty \frac{\ln(x)}{(1+x^2)^3} {\rm d}x = -\frac{\pi}{4} $$
De todos modos, aquí está mi solución trivial usando $u = \frac1x$:
$$ \begin{align} \int_0^\infty \frac{x^2 \ln(x)}{(1+x^2)^3} {\rm d}x & = \int_0^1 \frac{x^2 \ln(x)}{(1+x^2)^3} {\rm d}x + \int_1^\infty \frac{x^2 \ln(x)}{(1+x^2)^3} {\rm d}x \\ & = \int_\infty^1 \frac{\frac{1}{u^2} \ln(\frac1u)}{(1+\frac{1}{u^2})^3} \frac{-1}{u^2} {\rm d}u + \int_1^\infty \frac{x^2 \ln(x)}{(1+x^2)^3} {\rm d}x \\ & = -\int_1^\infty \frac{\ln(u)}{u(u+\frac{1}{u})^3} {\rm d}u + \int_1^\infty \frac{x^2 \ln(x)}{(1+x^2)^3} {\rm d}x \\ & = - \int_1^\infty \frac{u^2 \ln(u)}{(1+u^2)^3} {\rm d}u + \int_1^\infty \frac{x^2 \ln(x)}{(1+x^2)^3} {\rm d}x \\ & = 0 \end{align} $$
Estoy seguro de que hay muchos más métodos interesantes para el agrietamiento de esta integral, ya que está tan estrechamente relacionado con el popular $\int_0^\infty \frac{\ln(x)}{1+x^2} {\rm d}x = 0$. Por favor, compartir si te encuentras con cualquier.