Respuesta Sin Polinomios de Legendre y las Integrales Elípticas
El uso de la integral
$$
\frac1\pi\int_0^1\frac{x^n\,\mathrm{d}x}{\sqrt{x(1-x)}}=\frac{\binom{2n}{n}}{4^n}\tag1
$$
y la suma
$$
\sum_{n=0}^\infty\frac{\binom{2n}{n}}{4^n}r^n=\frac1{\sqrt{1-r}}\tag2
$$
tenemos
$$
\sum_{k=0}^\infty\frac{\binom{2k}{k}^2}{16^k}r^k
=\frac1\pi\int_0^1\frac{\mathrm{d}x}{\sqrt{1-rx}\sqrt{x(1-x)}}\tag3
$$
Sustituyendo $r\mapsto r^2$ en $(3)$ e integrar en $r$, obtenemos
$$
\begin{align}
\sum_{k=0}^\infty\frac{\binom{2k}{k}^2}{16^k}\frac{r^{2k+1}}{2k+1}
&=\frac1\pi\int_0^1\frac{\arcsin\left(r\sqrt{x}\right)\,\mathrm{d}x}{x\sqrt{1-x}}\\
&=\frac2\pi\int_0^1\frac{\arcsin(rx)\,\mathrm{d}x}{x\sqrt{1-x^2}}\tag4
\end{align}
$$
Conectar $r=1$, y utilizando el resultado de $(11)$, los rendimientos de los
$$
\begin{align}
\color{#C00}{\sum_{k=0}^\infty\frac{\binom{2k}{k}^2}{16^k}\frac1{2k+1}}
&=\frac2\pi\int_0^1\frac{\arcsin(x)\,\mathrm{d}x}{x\sqrt{1-x^2}}\\
&=\frac2\pi\int_0^{\pi/2}\frac{x}{\sin(x)}\,\mathrm{d}x\\[6pt]
&=\color{#C00}{\frac{4\mathrm{G}}\pi}\tag5
\end{align}
$$
Sustituyendo $r\mapsto r^2$ en $(3)$, dividiendo por $r^2$, y la integración en $r$, obtenemos
$$
\sum_{k=0}^\infty\frac{\binom{2k}{k}^2}{16^k}\frac{r^{2k-1}}{2k-1}
=\frac1{\pi r}\int_0^1\frac{-\sqrt{1-r^2x}\,\mathrm{d}x}{\sqrt{x(1-x)}}\tag6
$$
Conectar $r=1$rendimientos
$$
\begin{align}
\color{#090}{\sum_{k=0}^\infty\frac{\binom{2k}{k}^2}{16^k}\frac1{2k-1}}
&=\frac1\pi\int_0^1\frac{-1\,\mathrm{d}x}{\sqrt{x}}\\
&=\color{#090}{-\frac2\pi}\tag7
\end{align}
$$
Dividiendo $(6)$ por $r$, y la integración en $r$, obtenemos
$$
\begin{align}
\sum_{k=0}^\infty\frac{\binom{2k}{k}^2}{16^k}\frac{r^{2k-1}}{(2k-1)^2}
&=\frac1{\pi r}\int_0^1\frac{\left(r\sqrt{x}\arcsin\left(r\sqrt{x}\right)+\sqrt{1-r^2x}\right)\,\mathrm{d}x}{\sqrt{x(1-x)}}\\
&=\frac2{\pi r}\int_0^1\frac{\left(rx\arcsin(rx)+\sqrt{1-r^2x^2}\right)\,\mathrm{d}x}{\sqrt{1-x^2}}\tag8
\end{align}
$$
Conectar $r=1$rendimientos
$$
\begin{align}
\color{#00F}{\sum_{k=0}^\infty\frac{\binom{2k}{k}^2}{16^k}\frac1{(2k-1)^2}}
&=\frac2\pi\int_0^1\frac{\left(x\arcsin(x)+\sqrt{1-x^2}\right)\,\mathrm{d}x}{\sqrt{1-x^2}}\\
&=\frac2\pi\left(\int_0^{\pi/2}x\sin(x)\,\mathrm{d}x+1\right)\\[6pt]
&=\color{#00F}{\frac4\pi}\tag9
\end{align}
$$
Por lo tanto,
$$
\begin{align}
\sum_{k=0}^\infty\frac{\binom{2k}{k}^2}{2^{4k+1}} \frac{k(6k-1)}{(2k-1)^2(2k+1)}
&=\frac12\sum_{k=0}^\infty\frac{\binom{2k}{k}^2}{16^k}\left(\color{#C00}{\frac{1/2}{2k+1}}\color{#090}{+\frac1{2k-1}}\color{#00F}{+\frac{1/2}{(2k-1)^2}}\right)\\
&=\frac12\left(\color{#C00}{\frac{2\mathrm{G}}\pi}\color{#090}{-\frac2\pi}\color{#00F}{+\frac2\pi}\right)\\
&=\bbox[5px,border:2px solid #C0A000]{\frac{\mathrm{G}}\pi}\tag{10}
\end{align}
$$
Resultado utilizado en $\boldsymbol{(5)}$:
$$
\begin{align}
\int_0^{\pi/2}\frac{x}{\sin(x)}\,\mathrm{d}x
&=2i\int_0^{\pi/2}x\sum_{k=0}^\infty e^{-i(2k+1)x}\,\mathrm{d}x\\
&=\sum_{k=0}^\infty\frac{-2}{2k+1}\int_0^{\pi/2}x\,\mathrm{d}e^{-i(2k+1)x}\\
&=\sum_{k=0}^\infty\frac{-2}{2k+1}\left(\frac\pi2(-i)(-1)^k-\int_0^{\pi/2}e^{-i(2k+1)x}\,\mathrm{d}x\right)\\
&=i\frac{\pi^2}4+\sum_{k=0}^\infty\frac{2i}{(2k+1)^2}\left((-i)(-1)^k-1\right)\\
&=i\frac{\pi^2}4+2\sum_{k=0}^\infty\frac{(-1)^k}{(2k+1)^2}-i\frac{\pi^2}4\\[6pt]
&=2\mathrm{G}\tag{11}
\end{align}
$$