En este puesto M.N.C.E dio la igualdad a continuación $$\frac{\partial ^{5}}{\partial a^{3}\partial b^{2}}\mathrm{B}\left ( 1,0^{+} \right )=\left [ \frac{1}{b}+O\left ( 1 \right ) \right ]\left [ \left ( 12\zeta ^{2}\left ( 3 \right )-\frac{23\pi ^{6}}{1260} \right )b+O\left ( b^{2} \right ) \right ]_{b=0}$$ donde $\mathrm B(a,b)$ es la función Beta.
Pero, ¿cómo conseguir esta igualdad? ¿Se puede utilizar el mismo método para evaluar $$\frac{\partial ^{6}}{\partial a^{3}\partial b^{3}}\mathrm{B}\left ( 1,0^{+} \right ),\frac{\partial ^{6}}{\partial a^{4}\partial b^{2}}\mathrm{B}\left ( 1,0^{+} \right )?$$