$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\dd}{{\rm d}}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\ic}{{\rm i}}% \newcommand{\imp}{\Longrightarrow}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1\,\right\vert}% \newcommand{\yy}{\Longleftrightarrow}$ $\ds{{\cal I} \equiv \int_{0}^{1}\int_{-1}^{1}\verts{x + y}\,\dd y\,\dd x = \int_{0}^{1}{\cal F}\pars{x}\,\dd x\quad\mbox{where}\quad {\cal F}\pars{x} \equiv \int_{-1}^{1}\verts{x + y}\,\dd y}$
\begin {align} { \cal F} \pars {x} &= \left.\vphantom { \LARGE A} \verts {x + y}\N-, y\N-, \right\vert_ {y\ =\ -1}^{y\ 1} - \int_ {-1}^{1}y \sgn\pars {x + y}\N-, \dd y \\ [3mm]&= \verts {x + 1} + \verts {x - 1} - \bracks {% \left.\vphantom { \LARGE A} \sgn\pars {x + y}\N, {y^{2} \over 2} \right\vert_ {y\ =\ -1}^{y\ =\ 1}} + \int_ {-1}^{1}{y^{2} \over 2} \bracks {2 \delta\pars {x + y}}, \dd y \\ [3mm]&= \verts {x + 1} + \verts {x - 1} - {1 \over 2}\, \sgn\pars {x + 1} + {1 \over 2}\, \sgn\pars {x - 1} + x^{2} \Theta\pars {1 - \verts {x}} \end {align}
$$ {\cal F}\pars{x} = \verts{x + 1} + \verts{x - 1} - {1 \over 2}\,\sgn\pars{x + 1} + {1 \over 2}\,\sgn\pars{x - 1} + x^{2}\Theta\pars{1 - \verts{x}} $$
\begin {align} { \cal I}&= \int_ {1}^{2}{1 \over 2}\, \verts {x}\, \dd x + \int_ {-1}^{0}{1 \over 2}\, \verts {x}\, \dd x - \int_ {1}^{2} \sgn\pars {x}\, \dd x + \int_ {-1}^{0} \sgn\pars {x}\, \dd x + \int_ {0}^{1}x^{2}\, \dd x \\ [3mm]&= \left. {x^{2} \over 4} \right\vert_ {1}^{2} - \left. {x^{2} \over 4} \right\vert_ {-1}^{0} - \left.x\right\vert_ {1}^{2} + \left.\pars {-x} \right\vert_ {-1}^{0} + \left. {x^{3} \over 3} \right\vert_ {1}^{2} \\ [3mm]&= \pars {1 - {1 \over 4}} - \pars {-\,{1 \over 4}} - 1 - 1 + \pars {{8 \over 3} - {1 \over 3}} = {4 \over 3} \end {align}
$$\color{#0000ff}{\large% \int_{0}^{1}\int_{-1}^{1}\verts{x + y}\,\dd y\,\dd x = {4 \over 3} } $$