Necesitamos $\displaystyle\sqrt3\sec\frac\pi5+\tan\frac\pi{30}=\cot\frac{2\pi}{15}=\tan\dfrac{11\pi}{30}$ como $\dfrac{2\pi}{15}+\dfrac{11\pi}{30}=\dfrac\pi2$
$\iff\displaystyle\sqrt3\sec\dfrac\pi5=\tan\dfrac{11\pi}{30}-\tan\dfrac\pi{30}$
$\iff\displaystyle\dfrac{\sqrt3}{\cos\dfrac\pi5}=\frac{\sin\left(\dfrac{11\pi}{30}-\dfrac\pi{30}\right)}{\cos\dfrac\pi{30}\cos\dfrac{11\pi}{30}}$
Como $\sin\left(\dfrac{11\pi}{30}-\dfrac\pi{30}\right)=\sin\dfrac\pi3=\dfrac{\sqrt3}2,$
$\iff\displaystyle\cos\frac\pi5=2\cos\frac\pi{30}\cos\dfrac{11\pi}{30}=\cos\dfrac\pi3+\cos\frac{2\pi}5$
$\iff\displaystyle\cos\frac\pi5-\cos\frac{2\pi}5=\cos\dfrac\pi3=\dfrac12$
Ver ahora Prueba de la ecuación trigonométrica $\cos(36^\circ) - \cos(72^\circ) = 1/2$