Respuestas
¿Demasiados anuncios?Como de costumbre este límite también puede ser evaluado sin el uso de la regla de L'Hospital y serie de Taylor sólo aplicando límites estándar combinado con el uso de álgebra de límites. Tenemos\begin{align} L &= \lim{x \to 0}\frac{(1 + 2x + 3x^{2})^{1/x} - (1 + 2x - 3x^{2})^{1/x}}{x}\notag\ &= \lim{x \to 0}\dfrac{\exp\left(\dfrac{\log(1 + 2x + 3x^{2})}{x}\right) - \exp\left(\dfrac{\log(1 + 2x - 3x^{2})}{x}\right)}{x}\notag\ &= \lim{x \to 0}\exp\left(\dfrac{\log(1 + 2x - 3x^{2})}{x}\right)\cdot\dfrac{\exp\left(\dfrac{\log(1 + 2x + 3x^{2}) - \log(1 + 2x - 3x^{2})}{x}\right) - 1}{x}\notag\ &= \lim{x \to 0}\exp\left(\dfrac{\log(1 + 2x - 3x^{2})}{2x - 3x^{2}}\cdot(2 - 3x)\right)\cdot\dfrac{\exp\left(\dfrac{1}{x}\log\left(\dfrac{1 + 2x + 3x^{2}}{1 + 2x - 3x^{2}}\right)\right) - 1}{x}\notag\ &= \exp(1\cdot 2)\lim{x \to 0}\dfrac{\exp\left(\dfrac{1}{x}\log\left(\dfrac{1 + 2x + 3x^{2}}{1 + 2x - 3x^{2}}\right)\right) - 1}{x}\notag\ &= \exp(2)\lim{z \to 0}\frac{\exp(z) - 1}{z}\cdot\lim{x \to 0}\dfrac{z}{x}\notag\ &= \exp(2)\lim{x \to 0}\dfrac{\log\left(1 + \dfrac{6x^{2}}{1 + 2x - 3x^{2}}\right)}{x^{2}}\notag\ &= \exp(2)\lim{x \to 0}\dfrac{\log\left(1 + \dfrac{6x^{2}}{1 + 2x - 3x^{2}}\right)}{\dfrac{6x^{2}}{1 + 2x - 3x^{2}}}\cdot\frac{6}{1 + 2x - 3x^{2}}\notag\ &= e^{2}\cdot 1\cdot 6 = 6e^{2}\notag \end {Alinee el} hemos utilizado el límite estándar $$\lim{x \to 0}\frac{\log(1 + x)}{x} = 1 = \lim_{x \to 0}\frac{e^{x} - 1}{x}$$ and the fact that $$z = \frac{1}{x}\log\left(\frac{1 + 2x + 3x^{2}}{1 + 2x - 3x^{2}}\right) = \frac{1}{x}\log\left(1 + \frac{6x^{2}}{1 + 2x - 3x^{2}}\right)\to 0$$ as $x \to 0$ (que sigue fácilmente de los límites estándar mencionados anteriormente).
Considerar $$A=\frac{(1+2x+3x^2)^{\frac{1}{x}}-(1+2x-3x^2)^{\frac{1}{x}}}{x} =\frac{B^{\frac{1}{x}}-C^{\frac{1}{x}}}x$$ using $$B=(1+2x+3x^2) \qquad , \qquad C=(1+2x-3x^2)$$ So $$\log(B^{\frac{1}{x}})=\frac{1}{x}\log(B)$$ and now, using Taylor series $$\log(1+y)=y-\frac{y^2}{2}+\frac{y^3}{3}+O\left(y^4\right)$$ replace $ y$ by $(2x+3x^2) $ to get $$\log(B)=2 x+x^2-\frac{10 x^3}{3}+O\left(x^4\right)$$ which gives $$\log(B^{\frac{1}{x}})=2+x-\frac{10 x^2}{3}+O\left(x^3\right)$$ Now, using Taylor again, $$B^{\frac{1}{x}}=e^{\log(B^{\frac{1}{x}})}=e^2+e^2 x-\frac{17 e^2 x^2}{6}+O\left(x^3\right)$$ Doing the same with the second term, you should arrive to $$C^{\frac{1}{x}}=e^2-5 e^2 x+\frac{127 e^2 x^2}{6}+O\left(x^3\right)$$ All of that makes $% $ $A=6 e^2-24 e^2 x+O\left(x^2\right)$que muestra el límite y cómo se aborda.