Usted necesita para calcular el $$A=1+\dfrac {99\div 9}{10}+\dfrac {999\div9}{100}+\dfrac {9999\div 9}{1000}+...+\dfrac{(10^{n}-1)\div9}{10^{n-1}}$$
$$\begin{equation}\begin{aligned}
A&=\frac {3}{10} \left(1+\frac {11}{10}+\frac {111}{100}+\frac {1111}{1000}+\cdots +\frac{(10^{n}-1)\div9}{10^{n-1}}\right) \\
&=1+\dfrac {99\div 9}{10}+\dfrac {999\div9}{100}+\dfrac {9999\div 9}{1000}+\cdots+\dfrac{(10^{n}-1)\div9}{10^{n-1}} \\
&=1+\dfrac{99\times10^{n-2}\div9}{10^{n-1}}+\dfrac{999\times10^{n-3}\div9}{10^{n-1}}+\cdots+\dfrac{(10^{n}-1)\div9}{10^{n-1}} \\
&=1+\dfrac{(10^2-1)\times10^{n-2}+(10^3-1)\times10^{n-3}+(10^4-1)\times10^{n-4}+\cdots+(10^n-1)}{9\times 10^{n-1}} \\
&=1+\dfrac{10^n-10^{n-2}+10^n-10^{n-3}+10^n-10^{n-4}+\cdots+10^n-1}{9\times 10^{n-1}}\text{ (%#%#% terms)}\\
&=1+\dfrac{(n-1)10^n-(10^0+10^1+10^2+\cdots+10^{n-3}+10^{n-2})}{9\times 10^{n-1}}
\end{aligned}\end{equation}$$
Continuar para calcular
$$\begin{equation}\begin{aligned}
B&=10^0+10^1+10^2+\cdots+10^{n-3}+10^{n-2} \\
10B&=10^1+10^2+10^3+\cdots+10^{n-2}+10^{n-1}\\
\Rightarrow9B&=10B-B=10^{n-1}-1\\
B&=\dfrac{10^{n-1}-1}{9}
\end{aligned}\end{equation}$$
Podemos concluir que
$$\begin{equation}\begin{aligned}
A&=1+\dfrac{(n-1)10^n-\dfrac{10^{n-1}-1}{9}}{9\times 10^{n-1}}
\end{aligned}\end{equation}$$