4 votos

Transformada de Fourier

Mi pregunta es qué es la transformada de Fourier de la función

$f(t)=\exp(t/2)\text{sech}(t)$

¿Hay alguna forma cerrada? Una posibilidad es

$f(t)^2=\frac{1}{2} \text{sech}(t) + \frac{1}{4} (\dfrac{d}{dt}\operatorname{sech}t)$

y entonces el Fourier transforma a frecuencia f

$F(f(t)^2)=\frac{1}{2} F(\operatorname{sech}t)(1 + j\pi f )$

y $F(\operatorname{sech}t)=\pi \operatorname{sech}(\pi^2 f)$. Pero estoy interesado en $F(f(t))$ sí mismo.

3voto

Kim Peek II Puntos 758

La mejor manera de atacar el problema es el uso de la definición de la secante hiperbólica, junto con la Serie Geométrica.

$$\text{sech}(t) = \frac{2}{e^t + e^{-t}}$$

Entonces tenemos:

$$\mathcal{F}\left(e^{t/2}\text{sech}(t)\right)(k) = \frac{2}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} e^{t/2} e^{-i kt }\frac{\text{d}t}{e^t + e^{-t}}$$

Ahora tenemos que dividir la integral en los dos rangos de $(-\infty, 0]\cup[0, +\infty)$ con el fin de utilizar series geométricas.

Serie geométrica se utiliza para el denominador de la siguiente manera:

$$\frac{1}{e^t + e^{-t}} = \frac{1}{e^t(1 + e^{-2t})} = \frac{e^{-t}}{1 + e^{-2t}} = e^{-t}\sum_{j = 0}^{+\infty}(-1)^j e^{-2jt} ~~~~~~~ \text{for} ~~ [0, +\infty)$$

$$\frac{1}{e^t + e^{-t}} = \frac{1}{e^{-t}(1 + e^{2t})} = \frac{e^{t}}{1 + e^{2t}} = e^{t}\sum_{j = 0}^{+\infty}(-1)^j e^{2jt} ~~~~~~~ \text{for} ~~ (-\infty, 0]$$

De ahí que las dos integrales tenemos que calcular son:

Yo

$$\frac{2}{\sqrt{2\pi}}\sum_{j = 0}^{+\infty}(-1)^j\int_0^{+\infty} e^{t/2} e^{-ikt} e^{-t}e^{-2jt}\ \text{d}t = \frac{2}{\sqrt{2\pi}}\sum_{j = 0}^{+\infty}(-1)^j \frac{2}{1 + 4j + 2ik}$$

Siempre que $4 \Re(j)+1>2 \Im(k)$ cual debe ser el caso en cuestión.

La suma puede ser obtenida por un poco de conocimiento de Funciones Especiales, y en él se resumen:

$$\frac{4}{\sqrt{2\pi}}\sum_{j = 0}^{+\infty}(-1)^j \frac{1}{1 + 4j + 2ik} = \frac{\Phi \left(-1,1,\frac{1}{4} (2 i k+1)\right)}{\sqrt{2 \pi }}$$

El Hurwitz función de la que se obtiene puede ser expandida en "más elementales" funciones, como la Polygamma Función:

$$\frac{\Phi \left(-1,1,\frac{1}{4} (2 i k+1)\right)}{\sqrt{2 \pi }} \equiv \frac{\psi ^{(0)}\left(\frac{i k}{4}+\frac{5}{8}\right)-\psi ^{(0)}\left(\frac{i k}{4}+\frac{1}{8}\right)}{2 \sqrt{2 \pi }}$$

Aquí $\Phi$ denota la Hurwitz función y $\Psi$ denota la Polygamma.

II

La parte dos es similar a la primera, excepto para los cálculos. En cualquier caso, de igual forma, obtenemos:

$$\frac{2}{\sqrt{2\pi}}\sum_{j = 0}^{+\infty}(-1)^j\int_0^{+\infty} e^{t/2} e^{-ikt} e^{t}e^{2jt}\ \text{d}t = \frac{2}{\sqrt{2\pi}}\sum_{j = 0}^{+\infty}(-1)^j \frac{2}{4 j-2 i k+3}$$

Siempre que $\Im(k)+2 \Re(j)>-\frac{3}{2}$ que tiene de nuevo.

La suma puede ser evaluado de la misma manera:

$$\frac{4}{\sqrt{2\pi}}\sum_{j = 0}^{+\infty}(-1)^j \frac{1}{4 j-2 i k+3} = \frac{\Phi \left(-1,1,\frac{1}{4} (3-2 i k)\right)}{\sqrt{2 \pi }}$$

Y de nuevo:

$$\frac{\Phi \left(-1,1,\frac{1}{4} (3-2 i k)\right)}{\sqrt{2 \pi }} \equiv \frac{\psi ^{(0)}\left(\frac{7}{8}-\frac{i k}{4}\right)-\psi ^{(0)}\left(\frac{3}{8}-\frac{i k}{4}\right)}{2 \sqrt{2 \pi }}$$

El resultado final es, por consiguiente, la suma de los dos resultados anteriores, lo que significa que:

Resultado Final

$$\mathcal{F}\left(e^{t/2}\text{sech}(t)\right)(k) = \frac{\psi ^{(0)}\left(\frac{i k}{4}+\frac{5}{8}\right)-\psi ^{(0)}\left(\frac{i k}{4}+\frac{1}{8}\right)}{2 \sqrt{2 \pi }} + \frac{\psi ^{(0)}\left(\frac{7}{8}-\frac{i k}{4}\right)-\psi ^{(0)}\left(\frac{3}{8}-\frac{i k}{4}\right)}{2 \sqrt{2 \pi }} = $$ $$ = \frac{-\psi ^{(0)}\left(\frac{i k}{4}+\frac{1}{8}\right)+\psi ^{(0)}\left(\frac{i k}{4}+\frac{5}{8}\right)-\psi ^{(0)}\left(\frac{3}{8}-\frac{i k}{4}\right)+\psi ^{(0)}\left(\frac{7}{8}-\frac{i k}{4}\right)}{2 \sqrt{2 \pi }}$$

FINAL BELLEZA

A través de las definiciones de la Polygamma, y pocos álgebra, podemos transformar esta bastante feo expresión en algo lindo y sencillo. El "verdadero" resultado final es entonces:

$$\color{red}{\frac{\pi \tan \left(\frac{\pi i k}{4}+\frac{\pi }{8}\right)+\pi \cot \left(\frac{\pi i k}{4}+\frac{\pi }{8}\right)}{2 \sqrt{2 \pi }}}$$

Que puede escribirse también como

$$\color{blue}{\frac{\pi \tan \left(\frac{1}{8} (2 \pi i k+\pi )\right)+\pi \cot \left(\frac{1}{8} (2 \pi i k+\pi )\right)}{2 \sqrt{2 \pi }}}$$

3voto

Ron Gordon Puntos 96158

Una solución muy simple puede ser tenido usando el teorema de los residuos.

Considere la integral de contorno

$$\oint_C dz \, \frac{e^{z/2}}{\cosh{z}} e^{i k z} $$

donde $C$ es el rectángulo con vértices en los puntos $-R$, $R$, $R+i \pi$, y $-R+i \pi$. Entonces como $R \to \infty$ (donde las integrales sobre los lados verticales desaparecen), el contorno de la integral es igual a

$$\left (1+ i \, e^{-\pi k} \right ) \int_{-\infty}^{\infty} dx \, \frac{e^{x/2}}{\cosh{x}} e^{i k x} $$

(NOTA: la relación $\cosh{(x+i \pi)} = -\cosh{x}$ fue utilizado.)

El contorno de la integral es también igual a $i 2 \pi$ veces el residuo en el polo de el integrando de la integral de contorno, o al $z=i \pi/2$. Este residuo es igual a $-i e^{i \pi/4} e^{-\pi k/2}$. En consecuencia, después de un poco de álgebra, tenemos el siguiente resultado:

$$\int_{-\infty}^{\infty} dx \, \frac{e^{x/2}}{\cosh{x}} e^{i k x} = \sqrt{2} \pi \operatorname{sech}{(\pi k)} \left [\cosh{\left ( \frac{\pi k}{2} \right )} + i \sinh{\left ( \frac{\pi k}{2} \right )} \right ]$$

2voto

Felix Marin Puntos 32763

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,} \newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$

$\ds{\mrm{f}\pars{t} \equiv \expo{t/2}\mrm{sech}\pars{t} = \int_{-\infty}^{\infty}\hat{\mrm{f}}\pars{\omega}\expo{-\ic\omega t} {\dd\omega \más de 2\pi} \color{red}{\iff} \hat{\mrm{f}}\pars{\omega} = \int_{-\infty}^{\infty}\mrm{f}\pars{t}\expo{\ic\omega t}\dd t:\ {\Large ?}}$.

\begin{align} \hat{\mrm{f}}\pars{\omega} & = \int_{-\infty}^{\infty}\mrm{f}\pars{t}\expo{\ic\omega t}\dd t = \int_{-\infty}^{\infty}\expo{t/2}\mrm{sech}\pars{t}\expo{\ic\omega t}\dd t \\[5mm] &= 2\int_{-\infty}^{\infty}{\expo{t/2}\expo{\ic\omega t} \over \expo{t} + \expo{-t}}\,\dd t\qquad \pars{~\mbox{Set}\quad x \equiv \expo{t} \color{red}{\iff} t = \ln\pars{x}~} \\[5mm] & = 2\int_{0}^{\infty}{x^{1/2}\, x^{\omega\ic} \over x^{2} + 1}\,\dd x \,\,\,\stackrel{x^{2}\ \mapsto\ x}{=}\,\,\, \int_{0}^{\infty}{x^{-1/4 + \omega\ic/2} \over x + 1}\,\dd x \,\,\,\stackrel{x + 1\ \mapsto\ x}{=}\,\,\, \int_{1}^{\infty}{\pars{x - 1}^{-1/4 + \omega\ic/2} \over x}\,\dd x \\[5mm] \stackrel{x\ \mapsto\ 1/x}{=}\,\,\,& \int_{0}^{1}x^{-3/4 - \omega\ic/2}\,\pars{1 - x}^{-1/4 + \omega\ic/2}\,\,\dd x = {\Gamma\pars{1/4 -\omega\ic/2}\Gamma\pars{3/4 -\omega\ic/2} \over \Gamma\pars{1}} = {\pi \over \sin\pars{\pi\bracks{1/4 -\omega\ic/2}}} \\[5mm] & = {\pi \over \sin\pars{\pi/4}\cos\pars{\pi\omega\ic/2} - \cos\pars{\pi/4}\sin\pars{\pi\omega\ic/2}} = {\root{2}\pi \over \cosh\pars{\pi\omega/2} - \sinh\pars{\pi\omega/2}\ic} \\[5mm] & = \bbx{\root{2}\pi\,\mrm{sech}\pars{\pi\omega} \bracks{\cosh\pars{{\pi \over 2}\,\omega} + \sinh\pars{{\pi \over 2}\,\omega}\ic}} \end{align}

-1voto

Maxim Puntos 146

Si ya sabes que \mathcal $$ F [\operatorname {sech} t] = F(p) = \int{-\infty}^{\infty} e ^ {i p t} \operatorname{sech} \,dt t = \pi \operatorname{sech} \frac {\pi p} 2, $$ entonces $$ \mathcal F [e ^ t {t/2} \operatorname{sech}] = \int{-\infty}^{\infty} e ^ {i (p) -i/2) t} \operatorname{sech} \,dt t = \ F (p - i/2) = \pi \operatorname{sech} \frac {\pi (p 2 - me)} 4. $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X