No estoy seguro de que cuando usted dice que no acotada $p$-ádico de valor (valor absoluto?) que quieres decir por encima o por debajo?
Aquí es algo que puede interesarle al menos. Siempre que $E(\mathbf Q)$ es infinito el conjunto $C$ siempre contendrá racionales con arbitrariamente grande, $p$-ádico valor absoluto, por lo que el denominador altamente divisible por $p$. De hecho, todas ellas proceden de la $x$ coordinar solos.
El truco aquí es el $p$-ádico de filtración en $E$, se puede definir para cualquier $p$
$$ E_n = \{P \in E(\mathbf Q_p) : v_p(x(P)) \le -2n \} $$
then this is a descending sequence of subgroups of $E(\mathbf Q_p)$ which we think of as the subgroups of $p$-adic points which are $p$-adically close to the point at infinity. For this sequence the magic is that we have
$$E(\mathbf Q_p)/E_1 \cong E(\mathbf F_p)$$
and
$$E_n/E_{n+1} \cong \mathbf F_p$$
as groups. For detail you can look at Husemoller's book chapter 14. The point is if $P \in E(\mathbf Q)$ is of infinite order then $(\#E(\mathbf F_p)) \cdot P \en E_1$ and moreover $p^n \cdot (\#E(\mathbf F_p)) \cdot P \en E_n$ so we have a point with large negative $p$-adic valuation.
And here is some Sage code demonstrating this because I like Sage code:
sage: E = EllipticCurve("37a1")
sage: E.rank()
1
sage: P = E.gens()[0]
sage: P
(0 : -1 : 1)
sage: P.order()
+Infinity
sage: E.ap(5)
-2
sage: 6 - E.ap(5) # this is the number of points over F_5
8
sage: 8*P
(21/25 : -56/125 : 1)
sage: 5*8*P
(263817293110494867593838666854208001/292736325329248127651484680640160000 : -34188880637325550305106055730237610829874076311530751/158385319626308443937475969221994173751192384064000000 : 1)
sage: (5*8*P)[0]
263817293110494867593838666854208001/292736325329248127651484680640160000
sage: ((5*8*P)[0]).valuation(5)
-4
sage: ((5^2*8*P)[0]).valuation(5)
-6
sage: ((5^3*8*P)[0]).valuation(5)
-8
sage: ((5^4*8*P)[0]).valuation(5)
-10
You should probably be a little careful with the definition of the filtration if $E$ has bad reduction at $p$ pero todavía debe trabajar (puedo mostrar un ejemplo de esto si te gusta).