Vamos
$$I = \int_{-\pi/4}^{\pi/4} x \, \text{cosec} \, x \, dx = 2 \int_0^{\pi/4} x \, \text{cosec} \, x \, dx.$$
Después de la integración por partes tenemos
\begin{align}
I &= -\frac{\pi}{2} \ln (1 + \sqrt{2}) + 2 \int_0^{\pi/4} \ln (\text{cosec} \, x + \cot x) \, dx\\
&= -\frac{\pi}{2} \ln (1 + \sqrt{2}) + 2 \int_0^{\pi/4} \ln (1 + \cos x) \, dx - 2 \int_0^{\pi/4} \ln (\sin x) \, dx.
\end{align}
La segunda de estas integrales es tal vez (?) razonablemente bien conocidos (para una evaluación, ver aquí). El resultado es:
$$\int_0^{\pi/4} \ln (\sin x) \, dx = -\frac{1}{2} \mathbf{G} - \frac{\pi}{4} \ln 2,$$
donde $\mathbf{G}$ es el catalán es constante. Así
$$I = -\frac{\pi}{2} \ln (1 + \sqrt{2}) + \mathbf{G} + \frac{\pi}{2} \ln 2 + 2I_1.$$
Para la primera de las integrales haremos uso de la siguiente fórmula, una prueba de que se puede encontrar aquí
$$\ln (1 + \cos x) = 2 \sum_{n = 1}^\infty (-1)^{n + 1} \frac{\cos (nx)}{n} - \ln 2.$$
Así
\begin{align}
I_1 &= \int_0^{\pi/4} \ln (1 + \cos x) \, dx\\
&= 2 \sum_{n = 1}^\infty \frac{(-1)^{n + 1}}{n} \int_0^{\pi/4} \cos (nx) \, dx - \ln 2 \int_0^{\pi/4} dx\\
&= -\frac{\pi}{4} \ln 2 + 2 \sum_{n = 1}^\infty \frac{(-1)^{n + 1}}{n^2} \sin \left (\frac{n \pi}{4} \right )\\
&= -\frac{\pi}{4} \ln 2 + 2 \sum_{\stackrel{{\Large{n = 1}}}{n \in \text{odd}}}^\infty \frac{(-1)^{n + 1}}{n^2} \sin \left (\frac{n \pi}{4} \right ) + + 2 \sum_{\stackrel{{\Large{n = 1}}}{n \in \text{even}}}^\infty \frac{(-1)^{n + 1}}{n^2} \sin \left (\frac{n \pi}{4} \right )\\
&= -\frac{\pi}{4} \ln 2 + 2 \sum_{n = 1}^\infty \frac{1}{(2n - 1)^2} \sin \left [\frac{\pi}{4} (2n - 1) \right ] - \frac{1}{2} \sum_{n = 1}^\infty \frac{1}{n^2} \sin \left (\frac{n \pi}{2} \right )\\
&= -\frac{\pi}{4} \ln 2 + 2 S_1 - \frac{1}{2} S_2.
\end{align}
Para la segunda de estas sumas,
\begin{align}
S_2 &= \sum_{\stackrel{{\Large{n = 1}}}{n \in \text{odd}}}^\infty \frac{1}{n^2} \sin \left (\frac{\pi n}{2} \right ) + \sum_{\stackrel{{\Large{n = 1}}}{n \in \text{even}}} \frac{1}{n^2} \sin \left (\frac{\pi n}{2} \right )\\
&= \sum_{n = 0}^\infty \frac{(-1)^n}{(2n + 1)^2}\\
&= \mathbf{G},
\end{align}
después de un cambio en el índice de $n \mapsto 2n + 1$ en el extraño suma se ha hecho mientras el aun suma es idénticamente igual a cero.
Para la primera de las sumas, como converge absolutamente podemos dividir como sigue:
$$S_1 = \sum_{\stackrel{{\Large{n = 1}}}{n \in 1,5,9,\ldots}}^\infty \frac{1}{(2n - 1)^2} \sin \left [\frac{\pi}{4} (2k - 1) \right ] + \sum_{\stackrel{{\Large{n = 1}}}{n \in 2,6,10,\ldots}}^\infty \frac{1}{(2n - 1)^2} \sin \left [\frac{\pi}{4} (2k - 1) \right ] + \sum_{\stackrel{{\Large{n = 1}}}{n \in 3,7,11,\ldots}}^\infty \frac{1}{(2n - 1)^2} \sin \left [\frac{\pi}{4} (2k - 1) \right ] + \sum_{\stackrel{{\Large{n = 1}}}{n \in 4,8,12,\ldots}}^\infty \frac{1}{(2n - 1)^2} \sin \left [\frac{\pi}{4} (2k - 1) \right ].$$
Cambio de los índices de la siguiente manera: $n \mapsto 4n - 3, n \mapsto 4n - 2, n \mapsto 4n - 1, n \mapsto 4n$ conduce a
\begin{align}
S_1 &= \frac{1}{\sqrt{2}} \left [\sum_{n = 1}^\infty \frac{1}{(8n - 7)^2} + \sum_{n = 1}^\infty \frac{1}{(8n - 5)^2} - \sum_{n = 1}^\infty \frac{1}{(8n - 3)^2} - \sum_{n = 1}^\infty \frac{1}{(8n - 1)^2} \right ]\\
&= \frac{1}{\sqrt{2}} \left [\sum_{n = 0}^\infty \frac{1}{(8n + 1)^2} + \sum_{n = 0}^\infty \frac{1}{(8n + 3)^2} - \sum_{n = 0}^\infty \frac{1}{(8n + 5)^2} - \sum_{n = 0}^\infty \frac{1}{(8n + 7)^2} \right ]\\
&= \frac{1}{64 \sqrt{2}} \left [\sum_{n = 0}^\infty \frac{1}{(n + 1/8)^2} + \sum_{n = 0}^\infty \frac{1}{(n + 3/8)^2} - \sum_{n = 0}^\infty \frac{1}{(n + 5/8)^2} - \sum_{n = 0}^\infty \frac{1}{(n + 7/8)^2} \right ]\\
&= \frac{1}{64 \sqrt{2}} \left [\psi^{(1)} \left (\frac{1}{8} \right ) + \psi^{(1)} \left (\frac{3}{8} \right ) - \psi^{(1)} \left (\frac{5}{8} \right ) - \psi^{(1)} \left (\frac{7}{8} \right ) \right ],
\end{align}
donde hemos hecho uso de la serie de la representación de la polygamma función de orden uno (como se la conoce como la trigamma función). Por lo que el valor de $I_1$es:
$$I_1 = -\frac{\pi}{4} \ln 2 - \frac{1}{2} \mathbf{G} + \frac{1}{32 \sqrt{2}} \left [\psi^{(1)} \left (\frac{1}{8} \right ) + \psi^{(1)} \left (\frac{3}{8} \right ) - \psi^{(1)} \left (\frac{5}{8} \right ) - \psi^{(1)} \left (\frac{7}{8} \right ) \right ],$$
que conducen a un resultado final de
$$\int_{-\pi/4}^{\pi/4} x \, \text{cosec} \, x \, dx = -\frac{\pi}{2} \ln (1 + \sqrt{2}) + \frac{1}{16 \sqrt{2}} \left [\psi^{(1)} \left (\frac{1}{8} \right ) + \psi^{(1)} \left (\frac{3}{8} \right ) - \psi^{(1)} \left (\frac{5}{8} \right ) - \psi^{(1)} \left (\frac{7}{8} \right ) \right ].$$
La conversión de la trigamma funciones a Clausen funciones de orden dos
Inspirado por la respuesta dada por Zacky en términos de la Clausen función de orden dos, aquí voy a mostrar cómo convertir mi respuesta en términos de la 4 trigamma funciones en 2 Clausen funciones de orden 2.
La relación entre el Clausen función de orden dos y el trigamma función está dada por (una prueba de esto se puede encontrar aquí)
$$\text{Cl}_2 \left (\frac{q \pi}{p} \right ) = \frac{1}{(2p)^{2m} (2m - 1)!} \sum_{n = 1}^p \sin \left (\frac{qn\pi}{p} \right ) \left [\psi^{(1)} \left (\frac{n}{2p} \right ) + (-1)^q \psi^{(1)} \left (\frac{n + p}{2p} \right ) \right ].$$
Establecimiento $m = 1, q = 1, p = 4$da
\begin{align}
\text{Cl}_2 \left (\frac{\pi}{4} \right ) &= \frac{1}{64} \left [\frac{1}{\sqrt{2}} \left \{\psi^{(1)} \left (\frac{1}{8} \right ) - \psi^{(1)} \left (\frac{5}{8} \right ) \right \} + \psi^{(1)} \left (\frac{1}{4} \right ) - \psi^{(1)} \left (\frac{3}{4} \right ) \right.\\
& \qquad \left. + \frac{1}{\sqrt{2}} \left \{\psi^{(1)} \left (\frac{3}{8} \right ) - \psi^{(1)} \left (\frac{7}{8} \right ) \right \} \right ], \qquad (*)
\end{align}
y establecimiento $m = 1, q = 3, p = 4$da
\begin{align}
\text{Cl}_2 \left (\frac{3\pi}{4} \right ) &= \frac{1}{64} \left [\frac{1}{\sqrt{2}} \left \{\psi^{(1)} \left (\frac{1}{8} \right ) - \psi^{(1)} \left (\frac{5}{8} \right ) \right \} - \psi^{(1)} \left (\frac{1}{4} \right ) + \psi^{(1)} \left (\frac{3}{4} \right ) \right.\\
& \qquad \left. + \frac{1}{\sqrt{2}} \left \{\psi^{(1)} \left (\frac{3}{8} \right ) - \psi^{(1)} \left (\frac{7}{8} \right ) \right \} \right ]. \qquad (**)
\end{align}
En la suma de ($*$) ($**$) vemos que
$$\psi^{(1)} \left (\frac{1}{8} \right ) + \psi^{(1)} \left (\frac{3}{8} \right ) - \psi^{(1)} \left (\frac{5}{8} \right ) - \psi^{(1)} \left (\frac{7}{8} \right ) = 32 \sqrt{2} \left [\text{Cl}_2 \left (\frac{\pi}{4} \right ) + \text{Cl}_2 \left (\frac{3\pi}{4} \right ) \right ],$$
dando
$$\int_{-\pi/4}^{\pi/4} \frac{x}{\sin x} \, dx = -\frac{\pi}{2} \ln (1 + \sqrt{2}) + 2 \, \text{Cl}_2 \left (\frac{\pi}{4} \right ) + 2 \, \text{Cl}_2 \left (\frac{3\pi}{4} \right ).$$