Por la prueba de comparación, la serie converge. $$\sum_{n=0}^{\infty}\frac{(2n+15)^2}{(2n+11)^3\sqrt{(2n+13)}}=l$$ $$l\simeq0.39483198670640570922670209458869656945532664947383304288146572043505953641$$ (74 dígitos que se muestran)
Me gustaría saber si es posible encontrar una forma cerrada de expresión para $l$.
Editar
He utilizado un PARI/GP función (sumnum) para calcular un valor aproximado de $l$:
gp > #
timer = 1 (on)
gp > \p 74
realprecision = 77 significant digits (74 digits displayed)
gp > sumnum(n=0, (2*n+15)^2/(2*n+11)^3/sqrt(2*n+13),sumnuminit([+oo,-1.5]))
time = 15 ms.
%1 = 0.39483198670640570922670209458869656945532664947383304288146572043505953641
gp > sum(k=0,97,binomial(-1/2,k)*(zetahurwitz(k+3/2,11/2)+4*zetahurwitz(k+5/2,11/2)+4*zetahurwitz(k+7/2,11/2)))/2/sqrt(2)
time = 62 ms.
%2 = 0.39483198670640570922670209458869656945532664947383304288146572043505953641
gp > \p 400
realprecision = 404 significant digits (400 digits displayed)
gp > sumnum(n=0, (2*n+15)^2/(2*n+11)^3/sqrt(2*n+13),sumnuminit([+oo,-1.5]))
time = 1,078 ms.
%3 = 0.3948319867064057092267020945886965694553266494738330428814657204350595364122729251535099721677148100865638904442238183504239633022203492259575689525638233484603909542517059855919506733374353926795281971622814159109637670427399334579124116308394274900167149611375839262362929064148759669151317574581119034347857659144521214162698550204609725028401793070583608454779328237780415473232520384318559950198
gp > sum(k=0,537,binomial(-1/2,k)*(zetahurwitz(k+3/2,11/2)+4*zetahurwitz(k+5/2,11/2)+4*zetahurwitz(k+7/2,11/2)))/2/sqrt(2)
time = 3,532 ms.
%4 = 0.3948319867064057092267020945886965694553266494738330428814657204350595364122729251535099721677148100865638904442238183504239633022203492259575689525638233484603909542517059855919506733374353926795281971622814159109637670427399334579124116308394274900167149611375839262362929064148759669151317574581119034347857659144521214162698550204609725028401793070583608454779328237780415473232520384318559950198