A raíz de Ron...
Hacer las sustituciones: $x=\sqrt{y}$, $p=1/2+1/2\,\sqrt {1+4\,r}$, para obtener:
$\displaystyle \dfrac{64}{{\pi }^{2}}\,\int _{0}^{\infty }\!x \left( \int _{1}^{\infty }\!{\frac {\pecado
\left( 2\,\pi \,{x}^{2}p \left( p-1 \right) \right) }{p}}{dp}
\right) ^{2}{dx}$,
$\displaystyle=\dfrac{32}{{\pi }^{2}}\,\int _{0}^{\infty }\! \left( \int _{0
}^{\infty }\!{\frac {2\,\sin \left( 2\,\pi\, y\ r \right) }{\sqrt {1+4\,
r} \left( 1+\sqrt {1+4\,r} \right) }}{dr} \right) ^{2}{dy}
$, consulte el Apéndice,
$\displaystyle=\dfrac{16}{{\pi }^{2}}\,\int _{-\infty}^{\infty }\! \left( \int _{0
}^{\infty }\!{\frac {2\,\sin \left( 2\,\pi \,y \r \right) }{\sqrt {1+4\,
r} \left( 1+\sqrt {1+4\,r} \right) }}{dr} \right) ^{2}{dy}
$,
$\displaystyle=\dfrac{16}{{\pi }^{2}}\,\int _{-\infty}^{\infty }\! \left( \int _{-\infty
}^{\infty }\!{\frac {H(r)\,\sin \left( 2\,\pi \,\,y\r \right) }{\sqrt {1+4\,
|r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right) ^{2}{dy}
$ : $H \left( r \right) =\casos{1&$0\leq x$\cr -1&$x<0$\cr}$.
Nota entonces que:
$\displaystyle\left(\int _{-\infty
}^{\infty }\!{\frac {H(r)\,\sin \left( 2\,\pi \,\,y\r \right) }{\sqrt {1+4\,
|r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right) ^{2}=\displaystyle\left|-\dfrac{i}{2}\int _{-\infty
}^{\infty }\!{\frac {H(r)\,e^{ -i2\pi \,y\,r } }{\sqrt {1+4\,
|r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr}+\dfrac{i}{2}\int _{-\infty
}^{\infty }\!{\frac {H(r)\,e^{ i2\pi\, y\,r } }{\sqrt {1+4\,
|r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right| ^{2}$
$=\displaystyle\left|\int _{\infty
}^{\infty }\!{\frac {\left(H(r)-H(-r)\right)\,e^{ i2\pi \,y\,r } }{2\sqrt {1+4\,
|r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right| ^{2}=\displaystyle\left|\int _{\infty
}^{\infty }\!{\frac {\,e^{ i2\pi \,y\,r } }{\sqrt {1+4\,
|r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right| ^{2}.$
Ahora podemos usar el teorema de Plancherel que establece:
$\displaystyle \int _{-\infty }^{\infty }\! \left| f \left y \right)
\right| ^{2}{dy}=\int _{-\infty }^{\infty }\!
\left| F \left( r \right) \right| ^{2}{dr}
$ : $ \displaystyle F \left( r \right) =\int _{-\infty }^{\infty }\!f \left y \right) {
e^{-i2\pi r}}{dy}
$,
y por lo tanto:
$\displaystyle\dfrac{16}{{\pi }^{2}}\,\int _{-\infty}^{\infty }\! \displaystyle\left|\int _{\infty
}^{\infty }\!{\frac {\,e^{ i2\pi \,y\,r } }{\sqrt {1+4\,
|r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right| ^{2}{dy}$
$=\displaystyle\dfrac{16}{{\pi }^{2}}\,\int _{-\infty}^{\infty }\! \displaystyle\left|{\frac {1 }{\sqrt {1+4\,
|r|} \left( 1+\sqrt {1+4\,|r|} \right) }} \right| ^{2}{dr}$,
$=\dfrac{16}{{\pi }^{2}}\displaystyle\int _{0}^{\infty }\!{\frac {2}{ \left( 1+4\r \right) \left( 1+
\sqrt {1+4\,r} \right) ^{2}}}{dr}$.
Ahora si queremos deshacer la sustitución realizada por dejar $r = p^2-p$:
$\dfrac{16}{{\pi }^{2}}\displaystyle\int _{0}^{\infty }\!{\frac {2}{ \left( 1+4\r \right) \left( 1+
\sqrt {1+4\,r} \right) ^{2}}}{dr}=\dfrac{16}{{\pi }^{2}}\int _{1}^{\infty }\!{
\frac {1}{2{p}^{2} \left( 2\,p-1 \right) }}{dp}$,
y, a continuación, hacer un último sustitución $p=\dfrac{1}{q+2}$, se obtiene:
$\displaystyle\dfrac{16}{{\pi }^{2}}\int _{1}^{\infty }\!{
\frac {1}{2{p}^{2} \left( 2\,p-1 \right) }}{dp}=-\dfrac{16}{{\pi }^{2}}\int_{-2}^{-1}\dfrac{1}{2}+\dfrac{1}{q}{dq}=\dfrac{16\ln(2)-8}{\pi^2}$.
Apéndice:
Tenga en cuenta que la integral: $$\int _{0
}^{\infty }\!{\frac {2\,\sin \left( 2\,\pi \,y \r \right) }{\sqrt {1+4\,
r} \left( 1+\sqrt {1+4\,r} \right) }}{dr} $$
converge por la Chartier-Dirichlet de la prueba debido a que: $$f(r)={\frac {2\, }{\sqrt {1+4\,
r} \left( 1+\sqrt {1+4\,r} \right) }}$$
es monótona y continua en $ \mathbb R^+ $ y $f(r)\rightarrow0$ como $r\rightarrow \infty$, y porque:
$$\left|\int_{0}^{b}\sin\left(2\pi\,y\r\right){dr}\right|$$
es delimitada como $b\rightarrow\infty$.