Paraa,b,c>0ab+bc+ca+2abc=1, como para demostrar que: 1a+1b+1c≥4(a+b+c)?
Respuesta
¿Demasiados anuncios?La condición es equivalente a aa+1+bb+1+cc+1=1 then take x=a+1, y=bb+1, z=cc+1 and the condition becomes x+y+z=1 So we have a=x1−x=xy+z and similarly (by cyclic permutations) for other variables, on the other hand it is easily verified that a=xy+z, b=yz+x, c=zx+y satisfy the given condition, thus the condition is equivalent to saying that there exist positive real numbers x,y,z such that a=xy+z, b=yz+x, c=zx+y. Substituting this into the inequality we get that it is equivalent to y+zx+z+xy+x+yz≥4⋅(xy+z+yz+x+zx+y) But this is easily proved because by Cauchy-Schwarz inequality we have (y+z)(xy+xz)≥(√x+√x)2=4x⇔xy+xz≥4xy+z Analogously we have yx+yz≥4yz+x and zx+zy≥4zx+y la Adición de estos tres últimos desigualdades de los rendimientos de la deseada.