El valor de la integral tiene una muy buena forma cerrada en términos de la trigamma función:
$$\mathcal{I}=\color{blue}{-\frac{\ln{3}}{6}-\frac{5\pi}{9\sqrt{3}}+\frac{5\psi^{(1)}{\left(\frac13\right)}}{6\sqrt{3}\,\pi}}.$$
A partir de la segunda forma de la integral dada por el OP,
$$\begin{align}
\mathcal{I}
&=-\int_{0}^{1}\frac{x^3(1-x^2)}{(1+x^2)(1-x^2+x^4)^2}\frac{\mathrm{d}x}{\ln{x}}\\
&=-\int_{0}^{1}\frac{x^3(1-x^2)}{(1+x^6)(1-x^2+x^4)}\frac{\mathrm{d}x}{\ln{x}}\\
&=-\int_{0}^{1}\frac{x^3(1-x^4)}{(1+x^6)^2}\frac{\mathrm{d}x}{\ln{x}}\\
&=-\int_{0}^{1}\frac{z(1-z^{4/3})}{(1+z^2)^2}\frac{\mathrm{d}z}{3z^{2/3}\ln{\left(z^{1/3}\right)}}\\
&=\int_{0}^{1}\mathrm{d}z\,\frac{1}{(1+z^2)^2}\frac{z^{5/3}-z^{1/3}}{\ln{z}}\\
&=\int_{0}^{1}\mathrm{d}z\,\frac{1}{(1+z^2)^2}\int_{1/3}^{5/3}\mathrm{d}\mu\,z^{\mu}\\
&=\int_{1/3}^{5/3}\mathrm{d}\mu\int_{0}^{1}\mathrm{d}z\,\frac{z^{\mu}}{(1+z^2)^2}\\
&=\int_{1/3}^{5/3}\mathrm{d}\mu\left[-\frac14+\frac{\mu-1}{4}\beta{\left(\frac{\mu-1}{2}\right)}\right]\\
&=-\frac13+\int_{1/3}^{5/3}\mathrm{d}\mu\left[\frac{\mu-1}{4}\beta{\left(\frac{\mu-1}{2}\right)}\right]\\
&=-\frac13+\int_{-1/3}^{1/3}\mathrm{d}t\,t\beta{\left(t\right)}\\
&=-\frac13+\int_{-1/3}^{1/3}\mathrm{d}t\,\frac{t}{2}\left[\psi{\left(\frac{t+1}{2}\right)}-\psi{\left(\frac{t}{2}\right)}\right]\\
&=-\frac13+\int_{-1/3}^{1/3}\mathrm{d}t\,\frac{t}{2}\psi{\left(\frac{t+1}{2}\right)}-\int_{-1/3}^{1/3}\mathrm{d}t\,\frac{t}{2}\psi{\left(\frac{t}{2}\right)}\\
&=-\frac13+\int_{1/3}^{2/3}\mathrm{d}u\,(2u-1)\psi{\left(u\right)}-2\int_{-1/6}^{1/6}\mathrm{d}u\,u\psi{\left(u\right)}\\
&=-\frac13-\int_{1/3}^{2/3}\mathrm{d}u\,\psi{\left(u\right)}+2\int_{1/3}^{2/3}\mathrm{d}u\,u\psi{\left(u\right)}-2\int_{-1/6}^{1/6}\mathrm{d}u\,u\psi{\left(u\right)}\\
&=-\frac13+\ln{\left(\frac{\Gamma{\left(\frac13\right)}}{\Gamma{\left(\frac23\right)}}\right)}+2\int_{1/3}^{2/3}\mathrm{d}u\,u\psi{\left(u\right)}-2\int_{-1/6}^{1/6}\mathrm{d}u\,u\psi{\left(u\right)}\\
&=-\frac13+\ln{\left(\frac{\Gamma{\left(\frac13\right)}}{\Gamma{\left(\frac23\right)}}\right)}+2\int_{1/3}^{2/3}\mathrm{d}u\,u\psi{\left(u\right)}-2\int_{5/6}^{7/6}\mathrm{d}v\,(1-v)\psi{\left(1-v\right)}\\
&=-\frac13+\ln{\left(\frac{\Gamma{\left(\frac13\right)}}{\Gamma{\left(\frac23\right)}}\right)}+2\left[u\ln{\Gamma\left(u\right)}-\psi^{(-2)}{\left(u\right)}\right]_{1/3}^{2/3}\\
&~~~~~ +2\left[(1-v)\ln{\Gamma\left(1-v\right)}-\psi^{(-2)}{\left(1-v\right)}\right]_{5/6}^{7/6}\\
&=\ln{\left(\frac{\Gamma{\left(\frac13\right)}}{\Gamma{\left(\frac23\right)}}\right)}-\frac{5\pi}{9\sqrt{3}}-\frac{\ln{\left(2\pi\right)}}{3}+\frac23\ln{\left(\frac{\Gamma{\left(\frac23\right)}^2}{\Gamma{\left(\frac13\right)}}\right)}+\frac{5\psi^{(1)}{\left(\frac13\right)}}{6\sqrt{3}\,\pi}\\
&=-\frac{5\pi}{9\sqrt{3}}-\frac{\ln{3}}{6}+\frac{5\psi^{(1)}{\left(\frac13\right)}}{6\sqrt{3}\,\pi}.~\blacksquare\\
\end{align}$$