Pregunta
Me gustaría saber la forma más sencilla de encontrar el volumen del sólido de revolución creado al girar la parábola $y=x^2$ alrededor de la línea $y=x$ (la forma que se muestra en azul abajo). Actualmente estoy tomando AP BC Cálculo como un junior en la escuela secundaria, por lo que un método que utiliza esos conceptos sería ideal, pero si es mucho más simple de usar algunas matemáticas superiores, voy a mirar en él :)
Lo siguiente es lo que he intentado utilizando una variación del método del disco. Creo que es correcto, pero, como el lector puede ver, es muy complejo.
Mi método
Para emplear el método del disco, primero hay que derivar una función para el radio del sólido en función de $x$ a lo largo de $y=x$ . A continuación, elevar al cuadrado y multiplicar por $\pi$ . Por último, integrar en el intervalo $[0,\sqrt{2}]$ .
Comienza construyendo una línea perpendicular a $y=x$ que se cruza con $y=x$ (ocasionalmente $f(x)$ ) y $y=x^2$ (ocasionalmente $g(x)$ ) en $(x_2,y_2)$ y $(x_1,y_1)$ respectivamente (como se muestra a continuación).
$$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\tag{1}$$ Utiliza la fórmula de la distancia para encontrar la distancia entre estos puntos.
$$\begin{align} \color{gray}{y} &\color{gray}{=} \color{gray}{-x+2x_2}\\ y &=x \end{align}$$ $$x=-x+2x_2$$ $$2x=2x_2$$ $$x_2=x\tag{2}$$
$$\begin{align} y_2&=f(x_2)\\ &=x\tag{3} \end{align}$$
$$\begin{align} \color{gray}{y} &\color{gray}{=} \color{gray}{-x_1+2x_2}\\ \color{gray}{y} &\color{gray}{=} \color{gray}{-x_1+2x}\\ y &={x_1}^2 \end{align}$$ $${x_1}^2=-x_1+2x$$ $$0=1{x_1}^2+1x_1+-2x$$ $$\begin{align} x_1&=\frac{-1+\sqrt{1^2-4(1)(-2x)}}{2(1)}\\ &=\frac{\sqrt{1+8x}-1}{2}\tag{4} \end{align}$$
$$\begin{align} y_1&=g(x_1)\\ &=\bigg(\frac{\sqrt{1+8x}-1}{2}\bigg)^2\tag{5} \end{align}$$ Encuentra las variables de la fórmula de la distancia como funciones de $x$ (Ecuaciones 2-5 con las derivaciones indicadas sobre ellas, respectivamente).
$$\begin{align} d&=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\ &=\sqrt{\Bigg(x-\frac{\sqrt{1+8x}-1}{2}\Bigg)^2+\Bigg(x-\bigg(\frac{\sqrt{1+8x}-1}{2}\bigg)^2\Bigg)^2}\tag{6} \end{align}$$
Conecta las Ecs. 2-5 en la fórmula de la distancia.
$$\begin{align} d&=\sqrt{\Bigg(x-\frac{\sqrt{1+8x}-1}{2}\Bigg)^2+\Bigg(x-\bigg(\frac{\sqrt{1+8x}-1}{2}\bigg)^2\Bigg)^2}\\ &=\sqrt{\Bigg(x-\frac{\sqrt{1+8x}-1}{2}\Bigg)^2+\Bigg(x-\bigg(\frac{(1+8x)-2\sqrt{1+8x}+1}{4}\bigg)\Bigg)^2}\\ &=\sqrt{\Bigg(x-\frac{\sqrt{1+8x}-1}{2}\Bigg)^2+\Bigg(x-\bigg(\frac{2+8x-2\sqrt{1+8x}}{4}\bigg)\Bigg)^2}\\ &=\sqrt{\Bigg(\frac{2x}{2}-\frac{\sqrt{1+8x}-1}{2}\Bigg)^2+\Bigg(\frac{2x}{2}-\frac{1+4x-\sqrt{1+8x}}{2}\Bigg)^2}\\ &=\sqrt{\Bigg(\frac{2x-\sqrt{1+8x}+1}{2}\Bigg)^2+\Bigg(\frac{2x-1-4x+\sqrt{1+8x}}{2}\Bigg)^2}\\ &=\sqrt{\Bigg(\frac{1+2x-\sqrt{1+8x}}{2}\Bigg)^2+\Bigg(\frac{-1-2x+\sqrt{1+8x}}{2}\Bigg)^2}\\ &=\sqrt{2\Bigg(\frac{1+2x-\sqrt{1+8x}}{2}\Bigg)^2}\\ &=\sqrt{2\Bigg(\frac{1+4x^2+(1+8x)+4x-2\sqrt{1+8x}-4x\sqrt{1+8x}}{4}\Bigg)}\\ &=\sqrt{\frac{4x^2+12x-(4x+2)\sqrt{1+8x}+2}{2}}\\ &=\sqrt{2x^2+6x-(2x+1)\sqrt{1+8x}+1}\tag{7} \end{align}$$
Simplifica la Ecuación 6.
$$\begin{align} r&=\sqrt{2\bigg(\frac{x}{\sqrt{2}}\bigg)^2+6\bigg(\frac{x}{\sqrt{2}}\bigg)-\bigg(2\bigg(\frac{x}{\sqrt{2}}\bigg)+1\bigg)\sqrt{1+8\bigg(\frac{x}{\sqrt{2}}\bigg)}+1}\\ &=\sqrt{2\bigg(\frac{x^2}{2}\bigg)+6\bigg(\frac{\sqrt{2}x}{2}\bigg)-\bigg(2\bigg(\frac{\sqrt{2}x}{2}\bigg)+1\bigg)\sqrt{1+8\bigg(\frac{\sqrt{2}x}{2}\bigg)}+1}\\ &=\sqrt{x^2+3\sqrt{2}x-\big(\sqrt{2}x+1\big)\sqrt{1+4\sqrt{2}x}+1}\tag{8} \end{align}$$
Dilatar la Ecuación 7 por $\sqrt{2}$ en la dirección x para que la distancia entre los interceptos x de las funciones sea igual a la distancia entre los dos interceptos de $f(x)$ y $g(x)$ . Simplifica para obtener la Ecuación 8. Observa que la gráfica de la Ecuación 8 de $[0,\sqrt{2}]$ (abajo en verde) se compara con la reflexión sobre el eje x de la ecuación final para una parábola girada 45 grados dada por Ennar (abajo en rojo), como debería.
Trabajo de integración por partes (para abajo): $$\color{red}{\int\big(\sqrt{2}x+1\big)\sqrt{1+4\sqrt{2}x} \ dx}$$ $$ \begin{array}{|c|} \hline \mathbf{u=\sqrt{2}x+1},\ \mathbf{dv=\sqrt{1+4\sqrt{2}x} \ dx}\\ \hline \begin{array}{c|c} \frac{du}{dx}=\sqrt{2} & \int dv=\int\sqrt{1+4\sqrt{2}x}\ dx\\ \mathbf{du=\sqrt{2}\ dx} & v=\int\sqrt{w}\ \frac{dw}{4\sqrt{2}}\\ & v=\frac{1}{4\sqrt{2}}\int\sqrt{w}\ dw\\ & v=\frac{1}{4\sqrt{2}}\times\frac{w^\frac{3}{2}}{\frac{3}{2}}\\ & v=\frac{2}{12\sqrt{2}}w^\frac{3}{2}\\ & \mathbf{v=\frac{1}{6\sqrt{2}}\big(1+4\sqrt{2}x\big)^\frac{3}{2}}\\ \end{array}\\ \hline \end{array} $$
$$\begin{align} &=uv-\int v \ du\\ &=\big(\sqrt{2}x+1\big)\bigg(\frac{1}{6\sqrt{2}}\big(1+4\sqrt{2}x\big)^\frac{3}{2}\bigg)-\int \bigg(\frac{1}{6\sqrt{2}}\big(1+4\sqrt{2}x\big)^\frac{3}{2}\bigg)\big(\sqrt{2}\ dx\big)\\ &=\frac{1}{6\sqrt{2}}\big(\sqrt{2}x+1\big)\big(1+4\sqrt{2}x\big)^\frac{3}{2}-\frac{1}{6}\int \big(1+4\sqrt{2}x\big)^\frac{3}{2}\ dx\\ &=\frac{1}{6\sqrt{2}}\big(\sqrt{2}x+1\big)\big(1+4\sqrt{2}x\big)^\frac{3}{2}-\frac{1}{6}\int w^\frac{3}{2}\ \frac{dw}{4\sqrt{2}}\\ &=\frac{1}{6\sqrt{2}}\big(\sqrt{2}x+1\big)\big(1+4\sqrt{2}x\big)^\frac{3}{2}-\frac{1}{24\sqrt{2}}\int w^\frac{3}{2}\ dw\\ &=\frac{1}{6\sqrt{2}}\big(\sqrt{2}x+1\big)\big(1+4\sqrt{2}x\big)^\frac{3}{2}-\frac{1}{24\sqrt{2}}\times\frac{w^\frac{5}{2}}{\frac{5}{2}}\\ &=\frac{1}{6\sqrt{2}}\big(\sqrt{2}x+1\big)\big(1+4\sqrt{2}x\big)^\frac{3}{2}-\frac{2}{120\sqrt{2}}w^\frac{5}{2}\\ &=\frac{1}{6\sqrt{2}}\big(\sqrt{2}x+1\big)\big(1+4\sqrt{2}x\big)^\frac{3}{2}-\frac{1}{60\sqrt{2}}\big(1+4\sqrt{2}x\big)^\frac{5}{2}\\ &=\frac{1}{60\sqrt{2}}\big(1+4\sqrt{2}x\big)^\frac{3}{2}\big(10\big(\sqrt{2}x+1\big)-\big(1+4\sqrt{2}x\big)\big)\\ &=\frac{1}{60\sqrt{2}}\big(1+4\sqrt{2}x\big)^\frac{3}{2}\big(10\sqrt{2}x+10-1-4\sqrt{2}x\big)\\ &=\frac{1}{60\sqrt{2}}\big(1+4\sqrt{2}x\big)^\frac{3}{2}\big(6\sqrt{2}x+9\big)\\ \end{align}$$
Trabaja: $$\begin{align} V&=\int_0^\sqrt{2}\pi\sqrt{x^2+3\sqrt{2}x-\big(\sqrt{2}x+1\big)\sqrt{1+4\sqrt{2}x}+1}^2 \ dx\\ &=\int_0^\sqrt{2}\pi x^2+3\pi \sqrt{2}x-\pi \big(\sqrt{2}x+1\big)\sqrt{1+4\sqrt{2}x}+\pi \ dx\\ &=\int_0^\sqrt{2}\pi x^2 \ dx+\int_0^\sqrt{2}3\pi \sqrt{2}x \ dx-\int_0^\sqrt{2}\pi \big(\sqrt{2}x+1\big)\sqrt{1+4\sqrt{2}x} \ dx+\int_0^\sqrt{2}\pi \ dx\\ &=\pi\int_0^\sqrt{2}x^2 \ dx+3\pi \sqrt{2}\int_0^\sqrt{2}x \ dx-\pi \color{red}{\int_0^\sqrt{2}\big(\sqrt{2}x+1\big)\sqrt{1+4\sqrt{2}x} \ dx}+\pi\int_0^\sqrt{2}dx\\ &=\pi\bigg[\frac{x^3}{3}\bigg]_0^\sqrt{2}+3\pi \sqrt{2} \bigg[\frac{x^2}{2}\bigg]_0^\sqrt{2}-\pi \bigg[\frac{1}{60\sqrt{2}}\big(1+4\sqrt{2}x\big)^\frac{3}{2}\big(6\sqrt{2}x+9\big)\bigg]_0^\sqrt{2}+\pi[x]_0^\sqrt{2}\\ &=\pi\bigg[\frac{2\sqrt{2}}{3}-\frac{0}{3}\bigg]+3\pi\sqrt{2}\bigg[\frac{2}{2}-\frac{0}{2}\bigg]-\pi\bigg[\frac{(9)^\frac{3}{2}(21)}{60\sqrt{2}}-\frac{(1)^\frac{3}{2}(9)}{60\sqrt{2}}\bigg]+\pi\big[\sqrt{2}-0\big]\\ &=\pi\bigg[\frac{2\sqrt{2}}{3}\bigg]+3\pi\sqrt{2}[1]-\pi\bigg[\frac{558}{60\sqrt{2}}\bigg]+\pi\big[\sqrt{2}\big]\\ &=\frac{2}{3}\pi\sqrt{2}+3\pi\sqrt{2}-\frac{93}{20}\pi\sqrt{2}+\pi\sqrt{2}\\ &=\pi\sqrt{2}\bigg(\frac{40}{60}+\frac{180}{60}-\frac{279}{60}+\frac{60}{60}\bigg)\\ &=\pi\sqrt{2}\bigg(\frac{1}{60}\bigg)\\ &=\frac{\pi\sqrt{2}}{60} \end{align}$$
Utilizando el método del disco, integrar $\pi r^2$ de $[0,\sqrt{2}]$ con la Ecuación 8 introducida para $r$ con respecto a $x$ .
TL;DR
Francamente, la pregunta no parece tan complicada, y la respuesta de $\frac{\pi\sqrt{2}}{60}$ es definitivamente bastante simple. Tengo que creer que hay una forma más concisa de resolver este problema.
Todas las opiniones/respuestas son bienvenidas, ¡gracias!
0 votos
No quiero parecer desalentador, pero esto parece más un ensayo o un artículo que una pregunta.
3 votos
@mathreadler ¡En absoluto! Por lo general, en SE me han dicho que enseñe cosas que ya he probado. Así que me imagino que, aunque esto sea largo, ayuda a que la gente entienda dónde estoy y qué pienso. Tal vez sólo sea yo...