16 votos

Resolver la integral $\int_0^{\pi/2}\log\left(\frac{2+\sin2x}{2-\sin2x}\right)\mathrm dx$

Estoy en el proceso de probar $$I=\int_0^\infty \frac{\arctan x}{x^4+x^2+1}\mathrm{d}x=\frac{\pi^2}{8\sqrt{3}}-\frac23G+\frac\pi{12}\log(2+\sqrt{3})$$ Y he llegado a demostrar que $$2I=\frac{\pi^2}{4\sqrt{3}}+J$$ Dónde $$J=\int_0^\infty \log\bigg(\frac{x^2-x+1}{x^2+x+1}\bigg)\frac{\mathrm{d}x}{1+x^2}$$ A continuación, realizamos $x=\tan u$ para ver que $$J=\int_0^{\pi/2}\log\bigg(\frac{2+\sin2x}{2-\sin2x}\bigg)\mathrm dx$$ En el que he estado atascado durante el último tiempo. He intentado definir $$k(a)=\int_0^{\pi/2}\log(2+\sin2ax)\mathrm dx$$ Lo que da $$J=k(1)-k(-1)$$ Entonces diferenciando bajo la integral: $$k'(a)=2\int_0^{\pi/2}\frac{x\cos2ax}{2+\sin2ax}\mathrm dx$$ Podemos integrar por partes con $u=x$ para obtener una ecuación diferencial $$ak'(a)+k(a)=\frac\pi2\log(2+\sin\pi a)$$ Con la condición inicial $$k(0)=\frac\pi2\log2$$ Y a partir de aquí no tengo ni idea de qué hacer.

También probé la sustitución de medio ángulo tangente, pero eso sólo me dio la expresión original de $J$ .

Espero que haya algún método realmente fácil que no se me haya ocurrido... ¿Algún consejo?

Editar

Como se ha señalado en los comentarios, podría considerar $$P(a)=\frac12\int_0^\pi \log(a+\sin x)\mathrm dx\\\Rightarrow P(0)=-\frac\pi2\log2$$ Y $$ \begin{align} Q(a)=&\frac12\int_0^\pi \log(a-\sin x)\mathrm dx\\ =&\frac12\int_0^\pi\log[-(-a+\sin x)]\mathrm dx\\ =&\frac12\int_0^\pi\bigg(\log(-1)+\log(-a+\sin x)\bigg)\mathrm dx\\ =&\frac{i\pi}2\int_0^\pi\mathrm{d}x+\frac12\int_0^\pi\log(-a+\sin x)\mathrm dx\\ =&\frac{i\pi^2}2+P(-a) \end{align} $$ Por lo tanto, $$J=P(2)-Q(2)=P(2)-P(-2)-\frac{i\pi^2}2$$ Así que ahora nos preocupamos por $P(a)$ . Diferenciando bajo la integral, tenemos $$P'(a)=\frac12\int_0^\pi \frac{\mathrm{d}x}{a+\sin x}$$ Con una buena dosis de sustitución de medio ángulo tangente, $$P'(a)=\int_0^\infty \frac{\mathrm{d}x}{ax^2+2x+a}$$ completando el cuadrado, tenemos $$P'(a)=\int_0^\infty \frac{\mathrm{d}x}{a(x+\frac1a)^2+g}$$ Dónde $g=a-\frac1a$ . Con la sustitución trigonométrica correcta, $$P'(a)=\frac1{\sqrt{a^2+1}}\int_{x_1}^{\pi/2}\mathrm{d}x$$ Dónde $x_1=\arctan\frac1{\sqrt{a^2+1}}$ . A continuación, utilizando $$\arctan\frac1x=\frac\pi2-\arctan x$$ Tenemos que $$P'(a)=\frac1{\sqrt{a^2+1}}\arctan\sqrt{a^2+1}$$ Así que terminamos con algo que no sé cómo tratar (qué sorpresa) $$P(a)=\int\arctan\sqrt{a^2+1}\frac{\mathrm{d}a}{\sqrt{a^2+1}}$$ ¿Podría ayudarme con esto último? Gracias.

16voto

Zacky Puntos 162

$$J=\int_0^{\pi/2}\ln\left(\frac{2+\sin2x}{2-\sin2x}\right)\mathrm dx\overset{2x=t}=\frac12 \int_0^\pi \ln\left(\frac{1+\frac12\sin t}{1-\frac12\sin t}\right)\mathrm dt=\int_0^\frac{\pi}{2}\ln\left(\frac{1+\frac12\sin x}{1-\frac12\sin x }\right)\mathrm dx$$ Consideremos ahora la siguiente integral: $$I(a)=\int_0^\frac{\pi}{2}\ln\left(\frac{1+\sin a\sin x}{1-\sin a\sin x}\right)dx\Rightarrow I'(a)=2\int_0^\frac{\pi}{2} \frac{\sin a\sin x}{1-\sin^2a\sin^2 x}dx$$ $$=\frac{2}{\sin a}\int_0^\frac{\pi}{2} \frac{\sin x}{\cos^2x +\cot^2 a}dx=\frac{2}{\sin a}\arctan\left(x\tan a\right)\bigg|_0^1=\frac{2a}{\sin a}$$ $$I(0)=0 \Rightarrow J=I\left(\frac{\pi}{6}\right)=2\int_0^\frac{\pi}{6}\frac{x}{\sin x}dx$$ $$=2\int_0^{\frac{\pi}{6}} x \left(\ln\left(\tan \frac{x}{2}\right)\right)'dx=2x \ln\left(\tan \frac{x}{2}\right)\bigg|_0^{\frac{\pi}{6}} -2{\int_0^{\frac{\pi}{6}} \ln\left(\tan \frac{x}{2}\right)dx}=$$ $$\overset{\frac{x}{2}=t}=\frac{\pi}{3}\ln(2-\sqrt 3) -4\int_0^\frac{\pi}{12}\ln (\tan t)dt=\frac{\pi}{3}\ln(2-\sqrt 3) +\frac{8}{3}G$$ $G$ es la constante de Catalan y para la última integral ver aquí .


También hay que tener en cuenta que hay un pequeño error. Después de integrar por partes debería tener: $$2I=\frac{\pi^2}{4\sqrt 3}- \int_0^\infty\frac{(x^2-1)\arctan x}{x^4+x^2+1}dx=\frac{\pi^2}{4\sqrt 3}-\frac12\underbrace{\int_0^\infty \ln\bigg(\frac{x^2-x+1}{x^2+x+1}\bigg)\frac{dx}{1+x^2}}_{=J}$$

7voto

Resultado

Encuentro que la integral tiene una forma cerrada dada por

$$i = \int\limits_0^{\pi/2}\log\bigg(\frac{2+\sin2x}{2-\sin2x}\bigg)\mathrm dx = \frac{1}{3} \left(8 C-\pi \log \left(2+\sqrt{3}\right)\right) \simeq 1.06346\tag{1}$$

donde

$$C = \sum _{k=1}^{\infty } \frac{(-1)^{k+1}}{(2 k-1)^2} \simeq 0.915966$$

es la constante de Catalán.

Derivación heurística

Obsérvese trivialmente que, debido a la simetría del integrando, la integral puede escribirse como el doble de la integral de $0$ a $\frac{\pi}{4}$ que utilizaremos en lo que sigue.

La idea básica es la expansión en serie

$$\log \left(\frac{1+z}{1-z}\right)=2\tanh ^{-1}(z) = 2 \sum _{k=1}^{\infty } \frac{z^{2 k-1}}{2 k-1},|z|<1 \tag{2}$$

La integral se hará entonces sobre las potencias Impares del $\sin$ con el resultado

$$\int_0^{\frac{\pi }{4}} \sin ^{2 k-1}(2 x) \, dx = \frac{\sqrt{\pi } \Gamma (k)}{4 \Gamma \left(k+\frac{1}{2}\right)}\tag{3}$$

Ensamblando las piezas la suma que se debe tomar para representar $i$ se convierte en

$$i_s = \sum _{k=1}^{\infty } \frac{\sqrt{\pi } \Gamma (k)}{(2 k-1) 2^{2 k-1} \Gamma \left(k+\frac{1}{2}\right)}\tag{4}$$

y esta suma es calculada inmediatamente por Mathematica para dar el resultado compacto $(1)$ .

Hagamos la suma más transparente utilizando la cadena

$$\frac{\sqrt{\pi } \Gamma (k)}{\Gamma \left(k+\frac{1}{2}\right)}=B\left(\frac{1}{2},k\right)=\int_0^1 \frac{t^{k-1}}{\sqrt{1-t}} \, dt\tag{5}$$

y haciendo la suma bajo la integral

$$\sum _{k=1}^{\infty } \frac{t^{k-1}}{(2 k-1) 2^{2 k-1}}=\frac{\tanh ^{-1}\left(\frac{\sqrt{t}}{2}\right)}{\sqrt{t}}\tag{6}$$

conduce finalmente a la integral

$$\int_0^1 \frac{\tanh ^{-1}\left(\frac{\sqrt{t}}{2}\right)}{\sqrt{t} \sqrt{1-t}} \, dt\tag{7}$$

para el que Mathematica vuelve a dar rápidamente (1).

Pero debe haber una manera más corta ... sí, lo es, sustituyendo $\sin (2 x)=\sqrt{t}$ en la integral original da (7) directamente.

3voto

Lau Puntos 304

Un camino posible: Considere $$I(a)=\int_{0}^{+\infty}\frac{\arctan(ax)}{1+x^2+x^4} dx$$ y $$I'(a)=\int_{0}^{+\infty}\frac{x}{(1+x^2+x^4)(1+x^2a^2)}dx=\int_{0}^{+\infty}\frac{1}{(1+y+y^2)(1+a^2y)}dx$$ y

$$\frac{1}{(1+y+y^2)(1+a^2y)}= \frac{-a^2y-a^2+1}{(a^4-a^2+1)(1+y+y^2)}+\frac{a^4}{(a^4-a^2+1)(ay^2+1)}$$

también podemos calcular $I'(a)$ por la integración compleja (si lo has aprendido).

Gracias a Dylan por sus consejos.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X