Sea$X$ una variable distribuida normalmente con media$0$ y desviación estándar$1$. Consideraré su parte fraccional$$\overline{X} = X - \lfloor X \rfloor = X \, \bmod \, 1.$$
I have done some numerical testing and it seems likely that $ \ overline {X}$ is uniformly distributed on $ [0,1].$ To be specific I computed $$\sum_{k=-200}^{200} \Big( \Phi(k+b) - \Phi(k+a) \Big)$$ for a few values of $ b \ ge a$ in $ [0,1]$ and the result is consistently very close to $ ba$.
Here is the code in Sage: I first define
def Phi(x):
return (1/2 + erf(x / sqrt(2)) / 2).n()
then a few examples of these computations:
s = 0
for k in range(-200,200):
s = s + Phi(k+3/5) - Phi(k + 2/5)
print s.n()
0.199999998998919
and
s=0
for k in range(-200,200):
s = s + Phi(k+4/9) - Phi(k + 2/9)
print s.n()
0.222222221674844
Question: is $ \ overline {X} $ ¿se distribuye de manera uniforme? Por los ejemplos que he hecho, estoy seguro de que sí, pero no estoy seguro de cómo probarlo.