Vamos $$G_N= \prod_{n=1}^Na_n$$ y $$A_N=\left(\frac{\sum_{n=1}^Na_n}{N}\right)$$ Así $$G_{2N}= \prod_{n=1}^{2N}a_n \\ =\left(\prod_{n=1}^{N}a_n\right)\left(\prod_{n=N+1}^{2N}a_n\right) \\ ≤_{IH}\left(\sum_{n=1}^N\frac{a_n}{N}\right)^N\left(\sum_{n=N+1}^{2N}\frac{a_n}{N}\right)^N$$
No entendía por qué lo siguiente es verdadero
$$\left(\sum_{n=1}^N\frac{a_n}{N}\right)^N\left(\sum_{n=N+1}^{2N}\frac{a_n}{N}\right)^N$$
implica
$$\left(\sum_{n=1}^{2N}\frac{a_n}{2N}\right)^{2N}$$
Pero yo uso N=10 como ejemplo con Mathematica
$$\left(\sum_{n=1}^N\frac{a_n}{N}\right)^N\left(\sum_{n=N+1}^{2N}\frac{a_n}{N}\right)^N≠\left(\sum_{n=1}^{2N}\frac{a_n}{2N}\right)^{2N}$$