Si $y=\sqrt{\frac{1-\sin 2x}{1+\sin 2x}}$, demuestran que, a $\frac{dy}{dx}+\sec^2(\frac{\pi}{4}-x)=0$
Mis intentos:
Intento 1:
$y=\sqrt{\frac{1-\sin 2x}{1+\sin 2x}}$
$\implies y=\sqrt{\frac{\sin^2 x+\cos^2 x-2\sin x \cos x}{\sin^2 x+\cos^2 x+2\sin x \cos x}}$
$\implies y=\sqrt{\frac{(\sin x -\cos x)^2}{(\sin x+\cos x)^2}}$
$\implies y=\frac{\sin x -\cos x}{\sin x +\cos x}$
$\therefore \frac{dy}{dx}=\frac{(\sin x +\cos x)(\cos x+\sin x)-(\sin x -\cos x)(\cos x -\sin x)}{(\sin x +\cos x)^2}$
$\implies \frac{dy}{dx}=\frac{(\sin x+\cos x)^2+(\sin x -\cos x)^2}{(\sin x+\cos x)^2}$
$\implies \frac{dy}{dx}=\frac{2(\sin^2 x+\cos^2 x)}{(\cos(\frac{\pi}{2}-x)+\cos x)^2}$
$\implies \frac{dy}{dx}=\frac{2}{(2\cos(\frac{\pi}{4})\cos(\frac{\pi}{4}-x))^2}$
$\implies \frac{dy}{dx}=\frac{2}{4\cos^2(\frac{\pi}{4})\cos^2(\frac{\pi}{4}-x)}$
$\implies \frac{dy}{dx}=\frac{2}{4\times\frac{1}{2}\cos^2(\frac{\pi}{4}-x)}$
$\implies \frac{dy}{dx}=\sec^2(\frac{\pi}{4}-x)$
$\implies \frac{dy}{dx}-\sec^2(\frac{\pi}{4}-x)=0$
Pero tengo que probarlo $\frac{dy}{dx}+\sec^2(\frac{\pi}{4}-x)=0$
Intento 2:
$y=\sqrt{\frac{1-\sin 2x}{1+\sin 2x}}$
$\implies y=\sqrt{\frac{\cos^2 x+\sin^2 x-2\cos x \sin x}{\cos^2 x+\sin^2 x+2\cos x \sin x}}$
$\implies y=\sqrt{\frac{(\cos x -\sin x)^2}{(\cos x+\sin x)^2}}$
$\implies y=\frac{\cos x -\sin x}{\cos x +\sin x}$
$\therefore \frac{dy}{dx}=\frac{(\cos x +\sin x)(-\sin x-\cos x)-(\cos x -\sin x)(-\sin x +\cos x)}{(\cos x +\sin x)^2}$
$\implies \frac{dy}{dx}=\frac{-(\cos x+\sin x)^2+(\cos x -\sin x)^2}{(\cos x+\sin x)^2}$
$\implies \frac{dy}{dx}=\frac{(\cos x -\sin x)^2-(\cos x+\sin x)^2}{(\cos x+\sin x)^2}$
$\implies \frac{dy}{dx}=\frac{-4\sin x\cos x}{(\cos x+\cos(\frac{\pi}{2}-x))^2}$
$\implies \frac{dy}{dx}=\frac{-4\sin x\cos x}{(2\cos(\frac{\pi}{4})\cos(x-\frac{\pi}{4}))^2}$
$\implies \frac{dy}{dx}=\frac{-4\sin x\cos x}{4\cos^2(\frac{\pi}{4})\cos^2(x-\frac{\pi}{4})}$
$\implies \frac{dy}{dx}=\frac{-4\sin x\cos x}{4\times \frac{1}{2}\cos^2(x-\frac{\pi}{4})}$
$\implies \frac{dy}{dx}=\frac{-2\sin x\cos x}{\cos^2(x-\frac{\pi}{4})}$
Intento 3:
$y=\sqrt{\frac{1-\sin 2x}{1+\sin 2x}}$
$\implies y=\sqrt{\frac{(1-\sin 2x)(1-\sin 2x)}{(1+\sin 2x)(1-\sin 2x)}}$
$\implies y=\frac{1-\sin 2x}{\cos 2x}$
$\therefore \frac{dy}{dx}=\frac{\cos 2x(-2\cos 2x)-(1-\sin 2x)(-2\sin 2x)}{\cos^2 2x}$
$\implies \frac{dy}{dx}=\frac{-2\cos^2 2x+2\sin 2x(1-\sin 2x)}{\cos^2 2x}$
Mis preguntas:
(i) ¿por Qué Intento 2 dar un resultado diferente de lo que se da por Intento 1.
(ii) ¿Cómo puedo probar el resultado?