$\color{brown}{\textbf{Edition of 18.12.2018}}$
Permítanos presentar la cuestión de la identidad
$$(\vec{y} \cdot\vec{\nabla}_\vec{x})^n \frac{1}{x} = \left(\frac{y}{x}\right)^{2n+1} (\vec{x} \cdot\vec{\nabla}_\vec{y})^n \frac{1}{y}\tag1$$
en el formulario de
$$f_n(x,y)=f_n(y,x),\tag2$$
donde
$$\begin{align}
f_n(x,y)=\left(x_1^2+x_2^2+x_3^2\right)^{(2n+1)/2}\left(y_1\dfrac{\partial}{\partial x_1}+y_2\dfrac{\partial}{\partial x_2}+y_3\dfrac{\partial}{\partial x_3}\right)^{(n)} \left(x_1^2+x_2^2+x_3^2\right)^{(-1/2)}
\end{align}.\tag3$$
Entonces
$$\begin{align}
&f_1(x,y) = \left(x_1^2+x_2^2+x_3^2\right)^{3/2}\left(y_1\dfrac{\partial}{\partial x_1}+y_2\dfrac{\partial}{\partial x_2}+y_3\dfrac{\partial}{\partial x_3}\right)\left(x_1^2+x_2^2+x_3^2\right)^{-1/2}\\[4pt]
&= - \left(x_1^2+x_2^2+x_3^2\right)^{3/2}\left(y_1 x_1 + y_2 x_2+y_3 x_3\right) \left(x_1^2+x_2^2+x_3^2\right)^{-3/2},
\end{align}$$
$$f_1(x,y) = -\left(y_1x_1 + y_2x_2 + y_3 x_3\right),\tag4$$
$$\begin{align}
&f_{m+1}(x,y)=\left(x_1^2+x_2^2+x_3^2\right)^{(2m+3)/2}\left(y_1\dfrac{\partial}{\partial x_1}+y_2\dfrac{\partial}{\partial x_2}+y_3\dfrac{\partial}{\partial x_3}\right)^{m+1} \left(x_1^2+x_2^2+x_3^2\right)^{(-1/2)}\\[4pt]
&=\left(x_1^2+x_2^2+x_3^2\right)^{(2m+3)/2}\left(y_1\dfrac{\partial}{\partial x_1}+y_2\dfrac{\partial}{\partial x_2}+y_3\dfrac{\partial}{\partial x_3}\right)\left(f_m(x,y)\left(x_1^2+x_2^2+x_3^2\right)^{-(2m+1)/2}\right),
\end{align}$$
$$\begin{align}
&f_{m+1}(x,y)=\left(x_1^2+x_2^2+x_3^2\right)\left(y_1\dfrac{\partial}{\partial x_1}+y_2\dfrac{\partial}{\partial x_2}+y_3\dfrac{\partial}{\partial x_3}\right)f_m(x,y)\\[4pt]
&\quad -(2m+1)\left(y_1x_1 + y_2x_2 + y_3 x_3\right)f_m(x,y).
\end{align}\tag5$$
El uso de $(4)-(5),$ uno puede conseguir
$$\begin{align}
&f_2(x,y)=-\left(x_1^2+x_2^2+x_3^2\right)\left(y_1\dfrac{\partial}{\partial x_1}+y_2\dfrac{\partial}{\partial x_2}+y_3\dfrac{\partial}{\partial x_3}\right)\left(y_1x_1 + y_2x_2 + y_3 x_3\right)\\[4pt]
&\quad +3\left(y_1x_1 + y_2x_2 + y_3 x_3\right)^2,
\end{align}$$
$$f_2(x,y) = - \left(x_1^2+x_2^2+x_3^2\right)\left(y_1^2 + y_2^2 + y_3^2\right) + 3\left(y_1x_1 + y_2x_2 + y_3 x_3\right)^2,\tag6$$
$$\begin{align}
&f_3(x,y)=-\left(x_1^2+x_2^2+x_3^2\right)\left(y_1^2+y_2^2+y_3^2\right)\\[4pt]
&\qquad\times\left(y_1\dfrac{\partial}{\partial x_1}+y_2\dfrac{\partial}{\partial x_2}+y_3\dfrac{\partial}{\partial x_3}\right)\left(x_1^2 + x_2^2 + x_3^2\right)\\[4pt]
&\quad +3\left(x_1^2+x_2^2+x_3^2\right)\left(y_1\dfrac{\partial}{\partial x_1}+y_2\dfrac{\partial}{\partial x_2}+y_3\dfrac{\partial}{\partial x_3}\right)\left(y_1x_1 + y_2x_2 + y_3 x_3\right)^2\\[4pt]
&\quad +5\left(x_1^2+x_2^2+x_3^2\right)\left(y_1^2+y_2^2+y_3^2\right)\left(y_1x_1 + y_2x_2 + y_3 x_3\right)-15\left(y_1x_1 + y_2x_2 + y_3 x_3\right)^3\\[4pt]
&=-2\left(x_1^2+x_2^2+x_3^2\right)\left(y_1^2+y_2^2+y_3^2\right)\left(y_1x_1 + y_2x_2 + y_3 x_3\right)\\[4pt]
&\quad +6\left(x_1^2+x_2^2+x_3^2\right)\left(y_1^2+y_2^2+y_3^2\right)\left(y_1x_1 + y_2x_2 + y_3 x_3\right)\\[4pt]
&\quad +5\left(x_1^2+x_2^2+x_3^2\right)\left(y_1^2+y_2^2+y_3^2\right)\left(y_1x_1 + y_2x_2 + y_3 x_3\right)-15\left(y_1x_1 + y_2x_2 + y_3 x_3\right)^3,
\end{align}$$
$$f_3(x,y) = 9\left(x_1^2+x_2^2+x_3^2\right)\left(y_1^2 + y_2^2 + y_3^2\right) + 3\left(y_1x_1 + y_2x_2 + y_3 x_3\right)^2.\tag7$$
A partir de las fórmulas de $(4),(6)-(7)$ debe
$$f_1(x,y)=f_1(y,x)\in \mathbb F,\quad f_2(x,y)=f_2(y,x)\in \mathbb F,\quad f_3(x,y)=f_3(y,x)\in \mathbb F,\tag8$$
donde
$$\mathbb F = \left\{\sum_{k=0}^Q C_k\left(x_1^2+x_2^2+x_3^2\right)^{A_k} \left(y_1^2 + y_2^2 + y_3^2\right)^{A_k} \left(x_1y_1+x_2y_2+x_3y_3\right)^{B_k}\right\},$$
Deje que nosotros resultó
$$f_m(x,y)\in \mathbb F,$$
entonces
$$f_m(x,y)=f_m(y,x).\tag9$$
Tomando en cuenta $(3)-(4)$, uno puede conseguir
$$\begin{align}
&f_{m+1}(x,y)=\left(x_1^2+x_2^2+x_3^2\right)
\sum_{k=0}^{Q(m)}C_k\left(y_1^2 + y_2^2 +y_3^2\right)^{A_k}\\[4pt]
&\qquad\times\left(y_1\dfrac{\partial}{\partial x_1}+y_2\dfrac{\partial}{\partial x_2}+y_3\dfrac{\partial}{\partial x_3}\right)\Big(\left(x_1^2+x_2^2+x_3^2\right)^{A_k}
\left(x_1y_1+x_2y_2+x_3y_3\right)^{B_k}\Big)\\[4pt]
&\quad -(2m+1)\left(y_1x_1 + y_2x_2 + y_3 x_3\right)\\[4pt]
&\quad\times \sum_{k=0}^{Q(m)}C_k\left(x_1^2+x_2^2+x_3^2\right)^{A_k}\left(y_1^2 + y_2^2 + y_3^2\right)^{A_k}\left(x_1y_1+x_2y_2+x_3y_3\right)^{B_k}\\[4pt]
&=\sum_{k=0}^{Q(m)}C_k \left(x_1^2+x_2^2+x_3^2\right)^{A_k}\left(y_1^2 + y_2^2 +y_3^2\right)^{A_k}\Big(2A_k\left(x_1y_1+x_2y_2+x_3y_3\right)^{B_k+1}\\[4pt]
&\quad + B_k\left(x_1^2+x_2^2+x_3^2\right)\left(y_1^2 + y_2^2 +y_3^2\right) \left(x_1y_1+x_2y_2+x_3y_3\right)^{B_k-1}\\[4pt]
&\quad -(2m+1)\left(y_1x_1 + y_2x_2 + y_3 x_3\right)^{B_k+1}\Big)\in\mathbb F,
\end{align}$$
$$f_{m+1}(x,y) = f_{m+1}(y,x).\tag{10}$$
Por lo tanto, la identidad de $(2)$ es válido para $n=m+1$ y, teniendo en cuenta $(8)-(10),$ por inducción para todos los $n>1.$
$\color{brown}{\textbf{Proved.}}$