En $X = C^0\big([a,b]\big)$, para cualquier $p \in \mathbb{R}$, $p>1$, definimos la $L^p$ norma, $$\|f\|_{L^{p}}:=\big(\int^{b}_{a}|f(x)|^{p}dx \big)^{1/p}.$$
Mostrar que para $p\neq 2$, esta norma no es inducida por un producto escalar.
Mi método de tratar de demostrar que esto era para demostrar una contradicción con la regla del paralelogramo,
$$ \|f+g\|^{2}_{p} + \|f-g\|^{2}_{p} = 2\|f\|^{2}_{p} + 2\|g\|^{2}_{p}, \tag{$1$}$$
donde $f,g \in C^{0}([a,b])$.
Así que he definido las siguientes funciones;
$$f(x):=\frac{a+b}{2}-x$$
$$g(x) := \begin{cases}\frac{a+b}{2}-x, \ \ for \ \ a \leq x \le \frac{a+b}{2}. \\ x-\frac{a+b}{2}, \ \ for \ \ \frac{a+b}{2} < x \le b \end{casos}$$
lo que da
$$f(x)+g(x) = \begin{cases} a+b-2x, \ \ & for \ \ a\le x \le \frac{a+b}{2}. \\ 0, & for \ \ \frac{a+b}{2} < x \le b\end{cases}$$
$$f(x)-g(x) = \begin{cases} 0, & for \ \ a \le x \le \frac{a+b}{2}. \\ 2x - (a+b), \ \ & for \ \ \frac{a+b}{2} < x \le b \end{casos}$$
Entonces me puse a calcular cada término de la regla del paralelogramo,
$$\|f+g\|^{2}_{p} = \bigg( \int^{\frac{a+b}{2}}_{a}|a+b-2x|^{p}\bigg)^{2/p} = \frac{(b-a)^{\frac{2(p+1)}{p}}}{(2(p+1))^{2/p}} $$
$$ \|f-g\|^{2}_{p} = \bigg( \int_{\frac{a+b}{2}}^{b}|2x- (a+b)|^{p}\bigg)^{2/p} = \frac{(b-a)^{\frac{2(p+1)}{p}}}{(2(p+1))^{2/p}}$$
$$2\|f\|^{2}_{p} = 2 \bigg( \int^{b}_{a}| \frac{a+b}{2}-x|^{p} dx \bigg)^{2/p} = 2 \cdot \frac{2^{2/p}(\frac{b-a}{2})^{\frac{2(p+1)}{p}}}{(p+1)^{2/p}} $$
$$\begin{align}2 \|g\|^{2}_{p} & = 2 \bigg(\int^{\frac{a+b}{2}}_{a} |\frac{a+b}{2} - x|^{p} dx \ + \ \int^{b}_{\frac{a+b}{2}}|x- \frac{a+b}{2}|^{p} dx\bigg)^{2/p} \\ & =2 \cdot \frac{2^{2/p}(\frac{b-a}{2})^{\frac{2(p+1)}{p}}}{(p+1)^{2/p}} \end{align}$$
Enchufar a $(1)$ a continuación, obtener $$2 \cdot \frac{(b-a)^{\frac{2(p+1)}{p}}}{(2(p+1))^{2/p}} = 4 \cdot \frac{2^{2/p}(\frac{b-a}{2})^{\frac{2(p+1)}{p}}}{(p+1)^{2/p}}$$ lo cual simplifica bastante bien para
$$2^{p} = 4.$$
De modo que la igualdad sólo se cumple para $p = 2$.
Es lo que he hecho correcto? hay otra manera de probar que la pregunta ¿cuál es mejor?