En general, al tener la ogf (transformación z) $$ F(z) = \sum\limits_{0\, \le \;n} {a_{\,n} \,z^{\,n} } $$ entonces $$ {1 \over m}\sum\limits_{0 \le \,k\, \le \,m - 1} {\left( {z^{\,{1 \over m}} \;e^{\,i\,{{2k\pi } \over m}} } \right)^{\,j} F(z^{\,{1 \over m}} \;e^{\,i\,{{2k\pi } \over m}} )} = \sum\limits_{0\, \le \;n} {\,a_{\,m\;n - j} \,z^{\,n} } $$
Pero desafortunadamente, la expansión binomial truncada $$ \sum\limits_{0\, \le \;k} {\left( \matrix{ n \cr r - k \cr} \right)\,z^{\,k} } $$ no tiene en general ( $r<n$ ) una expresión compacta y cerrada.
Podemos pasar por la versión hipergeométrica $$ \sum\limits_{\left( {0\, \le } \right)\;k\,\left( { \le \,\,r} \right)} { \binom{m}{k} \binom{n}{r-k}\,z^{\,k} } = \binom{n}{r} \;{}_2F_{\,1} \left( {\matrix{ { - m,\; - r} \cr {n - r + 1} \cr } \;\left| {\,z} \right.} \right) $$ o a través de la doble ogf $$ \eqalign{ & G(x,y,n,m) = \sum\limits_{0\, \le \,k} {\left( {\sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,m} \right)} { \binom{m}{j}\,\binom{n}{k-j} y^{\,j} } } \right)x^{\,k} } = \cr & = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,m} \right)} { \binom{m}{j}\left( {x\,y} \right)^{\,j} \sum\limits_{\left( {j\, \le } \right)\,k\,\left( { \le \,n} \right)\,} { \,\binom{n}{k-j}x^{\,k - j} } } = \cr & = \left( {1 + xy} \right)^{\,m} \left( {1 + x} \right)^{\,n} \cr} $$
Entonces, por ejemplo, tenemos $$ \eqalign{ & \sum\limits_{0\, \le \,k} {\left( {\sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,\left\lfloor {\min (m,k)/2} \right\rfloor } \right)\;} { \left( \matrix{ m \cr 2j \cr} \right)\,\left( \matrix{ n \cr k - 2j \cr} \right)} } \right)x^{\,k} } = \cr & = {1 \over 2}\left( {G(x,1,n,m) + G(x, - 1,n,m)} \right) = \cr & = {1 \over 2}\left( {1 + x} \right)^{\,n} \left( {\left( {1 + x} \right)^{\,m} + \left( {1 - x} \right)^{\,m} } \right) = \cr & = {1 \over 2}\left( {1 + x} \right)^{\,n + m} + {1 \over 2}\left( {1 + x} \right)^{\,n} \left( {1 - x} \right)^{\,m} = \cr & = {1 \over 2}\left( {1 + x} \right)^{\,n + m} + {1 \over 2}\left( {1 + x} \right)^{\,n - m} \left( {1 - x^{\,2} } \right)^{\,m} = \cr & = {1 \over 2}\left( {1 + x} \right)^{\,n + m} + {1 \over 2}\left( {1 - x^{\,2} } \right)^{\,{{n + m} \over 2}} \left( {{{1 + x} \over {1 - x}}} \right)^{\,{{n - m} \over 2}} \cr} $$ que indica claramente cuál es la diferencia entre $$ {1 \over 2}\binom{n+m}{r} \quad vs\quad \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,\left\lfloor {\min (m,k)/2} \right\rfloor } \right)\;} { \binom{m}{2j} \, \binom{n}{r-2j} } $$
Por supuesto, el complemento será $$ \eqalign{ & \sum\limits_{0\, \le \,k} {\left( {\sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,\left\lfloor {\min (m,k)/2} \right\rfloor } \right)\;} { \binom{m}{2j+1} \,\binom{n}{k - \left( {2j + 1} \right)}} } \right)x^{\,k} } = \cr & = {1 \over 2}\left( {G(x,1,n,m) - G(x, - 1,n,m)} \right) = \cr & = {1 \over 2}\left( {1 + x} \right)^{\,n} \left( {\left( {1 + x} \right)^{\,m} - \left( {1 - x} \right)^{\,m} } \right) \cr} $$