Supongamos que $f\in L^p$ algunos $p\in(2,\infty)$. (Si $p=\infty$, simplemente tome $f_1=0$$f_2=f$.) En el caso en que $\|f\|_p=0$ es trivial (tome $f_1=f_2=0$), así que supongo que $\|f\|_p>0$. Vamos $$A\equiv\{x\in X\,|\,|f(x)|>2\|f\|_p\}$$ and define $f_1\equiv f\times\mathsf I_A$ and $f_2\equiv f\times \mathsf I_{A^\mathsf c}$. Clearly, $f=f_1+f_2$.
Por otra parte, $$|f_2|=|f|\times\mathsf I_{A^\mathsf c}\leq 2\|f\|_p$$ pointwise, so that $\|f_2\|_{\infty}\leq 2\|f\|_p$.
Además, uno tiene que (recuerde que $p>2$, por lo que no exponentes negativos están involucrados) $$|f|^p=|f|^{p-2}\times|f|^2\geq|f|^{p-2}\times|f|^2\times \mathsf I_{A}\geq 2^{p-2}\times\|f\|_p^{p-2}\times|f|^2\times \mathsf I_{A}=2^{p-2}\times\|f\|_p^{p-2}\times|f_1|^2.$$ Integrating both sides of this inequality yields: $$\|f\|_p^p\geq2^{p-2}\times\|f\|_p^{p-2}\times \|f_1\|_2^2.$$ Rearrange (division is possible since $\|f\|_p>0$) to obtain $$\|f_1\|_2^2\leq\frac{1}{2^{p-2}}\times \|f\|_p^2,$$ or, taking square roots, $$\|f_1\|_2\leq\frac{1}{2^{p/2-1}}\times \|f\|_p\leq2\|f\|_p.$$ The last inequality is implied by the fact that $p>2$.