Esto es algo como el triángulo de Pascal pero con un $2^n$:
$$\left{\begin{align} &f(n,0)=f(n,n)=2^n-1\ &f(n,k)=f(n-1,k-1)+f(n-1,k)+2^n \end{align}\right.$$ Is there a direct formula for $f$? I solved for $k \le 2 $ but I can't spot a general pattern for what seems to be a $k $-th degree polynomial after $(2k+1) \cdot 2 ^ n$: $$\begin{align} &f(n,0)=2^n-1 \ &f(n,1)=3 \cdot 2^n - n-4 \ &f(n,2)=5 \cdot 2^n - \frac{n(n+7)}2 - 8 \end{align} $$
Primera filas del triángulo de referencia: