Probar:
$$ 1+2q+3q^2+...+nq^{n-1} = \frac{1-(n+1)q^n+nq^{n+1}}{(1-q)^2} $$
Hipótesis:
$$ F(x) = 1+2q+3q^2+...+xq^{x-1} = \frac{1-(x+1)q^x+xq^{x+1}}{(1-q)^2} $$
Prueba:
$$ P1 | F(x) = \frac{1-(x+1)q^x+xq^{x+1}}{(1-q)^2} + (x+1)q^x = \frac{1-(x+2)q^{x+1}+xq^{x+2}}{(1-q)^2} $$ $$ P2 | \frac{1-(x+1)q^x+xq^{x+1}+[(x+1)(1-q)^2]q^x}{(1-q)^2} = \frac{1-(x+2)q^{x+1}+xq^{x+2}}{(1-q)^2} $$ $$ P3| \frac{x\color{red}{q^{x+1}}+[-(x+1)]\color{red}{q^x}+1+[(x+1)(1-q)^2]\color{red}{q^x}}{(1-q)^2} = \frac{x\color{red}{q^{x+2}}-(x+2)\color{red}{q^{x+1}}+1}{(1-q)^2} | $$
Aquí me acaba de reorganizar ambos lados de la ecuación, de manera que el lado izquierdo es claramente una expresión con un grado de x+1, mientras que el grado de RHS es x+2. Ambos LHS' $\color{red}{q^x}$ se agregan siguiente.
$$P4| \frac{xq^{x+1}+[-(x+1)+(x+1)(<1^2q^0+\binom{2}{1}1q-1^0q^2>)]q^x+1}{(1-q)^2}=\frac{xq^{x+2}-(x+2)q^{x+1}+1}{(1-q)^2} $$
$$P5 | \frac{xq^{x+1}+[2xq-xq^2+2q-q^2]q^x+1}{(1-q)^2} = \frac{xq^{x+2}-(x+2)q^{x+1}+1}{(1-q)^2} $$
Me quedo atascado en este punto. No sé si me estoy acercando el problema de la manera correcta. Por lo tanto, cualquier ayuda se agradece.
Gracias de antemano.