$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \int_{0}^{\infty}\exp\pars{-ax - {b \over x}}\,\dd x & = \int_{0}^{\infty} \exp\pars{-\root{ab}\bracks{\root{a \over b}x + {1 \over \root{a/b}x}}}\,\dd x \\[5mm] & \stackrel{x\ =\ \root{b/a}\exp\pars{\theta}}{=}\,\,\, \int_{-\infty}^{\infty}\exp\pars{-2\root{ab}\cosh\pars{\theta}} \,\root{b \over a}\expo{\theta}\,\dd\theta \\[5mm] & = \root{b \over a}\int_{-\infty}^{\infty}\exp\pars{-2\root{ab}\cosh\pars{\theta}} \bracks{\cosh{\theta} + \sinh{\theta}}\,\dd\theta \\[5mm] & = 2\root{b \over a}\int_{0}^{\infty}\exp\pars{-2\root{ab}\cosh\pars{\theta}} \cosh{\theta}\,\dd\theta \\[5mm] & = \bbx{2\root{b \over a}\,\mrm{K}_{1}\pars{2\root{ab}}}\,, \qquad\verts{\mrm{arg}\pars{2\root{ab}}} < {\pi \over 2}\label{1}\tag{1} \end{align}
$\ds{\mrm{K}_{\nu}}$ es un Función de Bessel modificada . \eqref {1} se encuentra con $\ds{\mathbf{\color{#000}{9.6.24}}}$ en Mesa A & S .