Allí estaba pidiendo a demostrar que el mejor coercitividad constante$c_p$$\psi$$2^{-1/p}$. En realidad esto no es cierto.
Para una determinada función simple
$$
f=\sum\limits_{k=1}^n a_k\chi_{A_k}
$$
denotar $x_k=\mu(A_k)$. Considere el caso especial $a_1=-1$, $a_2=0$, $a_3=1$ y $x_1=\varepsilon$, $x_2=1-2\varepsilon$, $x_3=\varepsilon$ donde $\varepsilon\in(0,2^{-1})$. Entonces
$$
c_p\leq\Vert\psi(f)\Vert_p/\Vert f\Vert_p=(\varepsilon+2^{1-p}(1-2\varepsilon))^{1/p}
$$
Desde el lado izquierdo es independiente de $\varepsilon$ llegamos a la conclusión de
$$
c_p\leq\min_{\varepsilon\in(0,2^{-1})}(\varepsilon+2^{1-p}(1-2\varepsilon))^{1/p}=2^{(1-\max(2,p))/p}
$$
Pero incluso el obligado
$$
b_p=2^{(1-\max(2,p))/p}
$$
no es áspera. Numérico de la prueba mostraron que para $p=3$, $a_1=0.079$, $a_2=0.079$, $a_3=-1$ con $x_1=0.879$, $x_2=0.99$, $x_3=0.022$ da
$$
c_3< 0.612176<0.629960\aprox b_3
$$
Aquí es un código de Mathematica para comprobar esto
FNorm[a_, x_, n_, p_] := (Sum[Abs[a[[k]]]^p x[[k]], {k, 1, n}])^(1/p);
FImageNorm[a_, x_, n_,
p_] := (Sum[
Abs[(a[[k]] + a[[l]])/2]^p x[[k]] x[[l]], {l, 1, n}, {k, 1,
n}])^(1/p);
FOpNorm[a_, x_, n_, p_] := FImageNorm[a, x, n, p]/FNorm[a, x, n, p]
OpNorm = 1;
A = {};
X = {};
p = 3;
With[{n = 3, R = 1, M = 100000}, For[i = 0, i < M, i++,
a = RandomReal[{-R, R}, n];
x = RandomVariate[GammaDistribution[1, 1], n];
x = x/Total[x];
norm = FOpNorm[a, x, n, p];
If[norm < OpNorm, {OpNorm, A, X} = {norm, a, x}, Continue[]];
]
]
Print[{{OpNorm, 2.^((1-Max[2,p])/p)}, A, X}]