$$
\sum_{k=1}^{\infty}\frac{3408 k^2+1974 k-720}{128 k^6+480 k^5+680 k^4+450 k^3+137 k^2+15 k}
$$
$$=\sum_{k=1}^{\infty}
\left(
-\frac{192}{4k}+\frac{1334}{4k+1}-\frac{2280}{4k+2}+\frac{756}{4k+3}+\frac{952}{4k+4}-\frac{570}{4k+5}\right)
$$
$$
=
-952 \color{blue}{\underbrace{
\sum_{k=1}^{\infty}\left( \frac{1}{4k}-\frac{1}{4k+4} \right)}_{A}}
+ 570 \color{verde oscuro de}{\underbrace{
\sum_{k=1}^{\infty}\left( \frac{1}{4k+1}-\frac{1}{4k+5} \right)}_{B}}
+760 \color{red}{\underbrace{\sum_{k=1}^{\infty} \left( \frac{1}{4k}+\frac{1}{4k+1}-\frac{3}{4k+2}+\frac{1}{4k+3} \right)}_{C}}
+4 \color{darkviolet}{\underbrace{
\sum_{k=1}^{\infty} \left( \frac{1}{4k+1}-\frac{1}{4k+3} \right)}_{D}}
$$
$$
=
-952\cdot \color{blue}{\frac{1}{4}}
+570\cdot \color{verde oscuro de}{\frac{1}{5}}
+760\cdot \color{red}{\frac{1}{6}}
+4 \color{darkviolet}{\left(\frac{\pi}{4}-\frac{2}{3}\right)}=\Large{\pi}.
$$
Pequeña explicación:
$$
\color{blue}{A=} \frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{16}+\frac{1}{16}-\ldots \color{blue}{=\frac{1}{4}}.
$$
$$
\color{verde oscuro}{B=} \frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\ldots \color{verde oscuro}{=\frac{1}{5}}.
$$
$$
\color{red}{C=}
\sum_{k=1}^{\infty}
\left( -\frac{1}{4k}+\frac{1}{4k+1}-\frac{1}{4k+2}+\frac{1}{4k+3} \right) +
\sum_{k=1}^{\infty}
\left( \frac{2}{4k}-\frac{2}{4k+2}\right)
$$
$$
=
\sum_{n=4}^{\infty}\frac{(-1)^{n+1}}{n} + \sum_{n=2}^{\infty} \frac{(-1)^n}{n} =
\Bigl(\ln 2 - 1 +\frac{1}{2}-\frac{1}{3}\Bigr) - \Bigl(\ln 2-1\Bigr) \color{red}{=\frac{1}{2} - \frac{1}{3} = \frac{1}{6}}.
$$
$$
\color{darkviolet}{D=}
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{2n+1} = \frac{\pi}{4} - 1 + \frac{1}{3} \color{darkviolet}{=\frac{\pi}{4} - \frac{2}{3}}.
$$
Aquí hemos utilizado la $\ln 2$ de la serie (por $C$) y Leibniz fórmula (por $D$).
Misma manera que podemos generar otras series similares para $\large \pi$:
$$
0\cdot a + 0\cdot B + 8 \cdot C + 4 \cdot D =
\sum_{k=1}^{\infty}
\frac
{80k^2+88k+12}
{k(2k+1)(4k+1)(4k+3)}
= \Large \pi.
$$
$$
-40\cdot a + 0\cdot B + 76 \cdot C + 4 \cdot D
=
\sum_{k=1}^{\infty}
\frac
{228k^2+225k+27}
{k(k+1)(2k+1)(4k+1)(4k+3)}
= \Large \pi.
$$
La exclusividad de tu serie es la mejor asintótica: ~ $\dfrac{1}{k^4}$.