Creo que es razonable hacerlo a mano. El siguiente es análogo al cálculo de grupo cohomology por el grupo $G = \mathbb{Z}$.
Deje $A := \mathbb{Z}[t_{1}^{\pm},t_{2}^{\pm}]$ ser el anillo de grupo de grupo de $G := \mathbb{Z} \times \mathbb{Z}$. A continuación, el $A$-módulo de $\mathbb{Z} \simeq A/(t_{1}-1,t_{2}-1)A$ $A$- módulo de resolución $$ \dotsb \to 0 \to A e_{2,1} \stackrel{f_{2}}{\to} A e_{1,1} \oplus A e_{1,2} \stackrel{f_{1}}{\to} A e_{0,1} \to \mathbb{Z} \to 0 $$ where $f_{2}(e_{2,1}) = (t_{2}-1)e_{1,1} - (t_{1}-1)e_{1,2}$ and $f_{1}(e_{1,i}) = (t_{i}-1)e_{0,1}$ for $i=1,2$. Let $$ M := \mathbb{Z}/(2) \oplus \mathbb{Z}/(2) $$ be the $A$-module as above. Applying $\operatorname{Hom}_{A}(-,M)$ to the above resolution gives a complex $$ M \stackrel{f_{1}^{\ast}}{\to} M^{\oplus 2} \stackrel{f_{2}^{\ast}}{\to} M \to 0 \to \dotsb $$ of $A$-modules, and taking cohomology at the $i$th cohomological degree gives $\mathrm{H}^{i}(G,M)$. In particular we have $$ \mathrm{H}^{2}(G, M) \simeq \operatorname{coker}(M^{\oplus 2} \stackrel{f_{2}^{\ast}}{\to} M) $$ where the map $f_{2}^{\ast} : M^{\oplus 2} \a M$ sends $(m_{1},m_{2}) \mapsto (t_{2}-1)m_{1} - (t_{1}-1)m_{2}$. Say $m_{i} \in M$ is of the form $(n_{i,1},n_{i,2})$ with $n_{i,\ell} \in \mathbb{Z}/(2)$. Then $\operatorname{im} f_{2}^{\ast}$ consists of the subgroup of $M$ generated by elements of the form $$ (n_{1,2}-n_{1,1} , n_{1,1}-n_{1,2}) - (n_{2,2}-n_{2,1} , n_{2,1}-n_{2,2}) $$ for $n_{i,\ell} \in \mathbb{Z}/(2) = \{0,1\}$, in other words $\{(0,0),(1,1)\}$.
Uno puede generalizar esto para calcular grupo cohomology por el grupo $G = \mathbb{Z}^{\oplus n}$ para cualquier entero positivo $n$, el punto es que $\{t_{1}-1 , \dotsc , t_{n}-1\}$ es una secuencia regular en $A := \mathbb{Z}[t_{1}^{\pm} , \dotsc , t_{n}^{\pm}]$, de modo que el complejo de Koszul ofrece una resolución de $\mathbb{Z}$ libre $A$-módulos anteriores.