Consideremos el $2n \times 2n$ bloque de la matriz $$\mathbf{X} = \pmatrix{\mathbf{P} & \mathbf{Q}\\ \mathbf{R} & \mathbf{S} }$$ where $\mathbf{P} , \mathbf{Q} , \mathbf{R} , \mathbf{S}$ are square matrices of order $n$ which commute pairwise. Show that $$\det \mathbf{X} = \det (\mathbf{PS} - \mathbf{QR}).$$
El problema en este caso estoy teniendo es cuando ninguna de las matrices de $ \mathbf{P} , \mathbf{Q} , \mathbf{R} , \mathbf{S} $ es invertible. Cualquier ayuda será muy apreciada.