4 votos

Demostrar la ecuación

Demostrar que $$\int_0^{\infty}\exp\left(-\left(x^2+\dfrac{a^2}{x^2}\right)\right)\text{d}x=\frac{e^{-2a}\sqrt{\pi}}{2}$$ Supongamos que la ecuación es cierta para $a=0.$

12voto

Dario Puntos 4415

$$I(a):=\int_0^{\infty}e^{-\left(x^2+\dfrac{a^2}{x^2}\right)}\text{d}x$$ $$\frac{dI}{da}=\int_0^{\infty}e^{-\left(x^2+\dfrac{a^2}{x^2}\right)}\left(-\frac{2a}{x^2}\right)\text{d}x$$ Ahora sustituye $y=\frac{a}{x}$ Así que $dy=-\frac{a}{y^2}$ : $$\frac{dI}{da}=2\int_{\text{sgn}(a)\cdot\infty}^{0}e^{-\left(\dfrac{a^2}{y^2}+y^2\right)}\text{d}y=-2\text{sgn}(a)\int_{0}^{\infty}e^{-\left(\dfrac{a^2}{y^2}+y^2\right)}\text{d}y=-2\text{sgn}(a)I$$ Para obtener $I$ sólo tienes que resolver la EDO simple: $$\frac{dI}{da}=-2\text{sgn}(a)I$$ con una condición inicial dada por $$I(0)=\frac{\sqrt{\pi}}{2}\ .$$ Esto le proporciona $$I(a)=\frac{e^{-2|a|}\sqrt{\pi}}{2}\ .$$

2voto

Tunk-Fey Puntos 19825

En general $$ \begin{align} \int_{x=0}^\infty \exp\left(-ax^2-\frac{b}{x^2}\right)\,dx&=\int_{x=0}^\infty \exp\left(-a\left(x^2+\frac{b}{ax^2}\right)\right)\,dx\\ &=\int_{x=0}^\infty \exp\left(-a\left(x^2-2\sqrt{\frac{b}{a}}+\frac{b}{ax^2}+2\sqrt{\frac{b}{a}}\right)\right)\,dx\\ &=\int_{x=0}^\infty \exp\left(-a\left(x-\frac{1}{x}\sqrt{\frac{b}{a}}\right)^2-2\sqrt{ab}\right)\,dx\\ &=\exp(-2\sqrt{ab})\int_{x=0}^\infty \exp\left(-a\left(x-\frac{1}{x}\sqrt{\frac{b}{a}}\right)^2\right)\,dx\\ \end{align} $$ El truco para resolver la última integral consiste en fijar $$ I=\int_{x=0}^\infty \exp\left(-a\left(x-\frac{1}{x}\sqrt{\frac{b}{a}}\right)^2\right)\,dx. $$ Sea $t=-\frac{1}{x}\sqrt{\frac{b}{a}}\;\rightarrow\;x=-\frac{1}{t}\sqrt{\frac{b}{a}}\;\rightarrow\;dx=\frac{1}{t^2}\sqrt{\frac{b}{a}}\,dt$ entonces $$ I_t=\sqrt{\frac{b}{a}}\int_{t=0}^\infty \frac{\exp\left(-a\left(-\frac{1}{t}\sqrt{\frac{b}{a}}+t\right)^2\right)}{t^2}\,dt. $$ Sea $t=x\;\rightarrow\;dt=dx$ entonces $$ I_t=\int_{t=0}^\infty \exp\left(-a\left(t-\frac{1}{t}\sqrt{\frac{b}{a}}\right)^2\right)\,dt. $$ Sumando los dos $I_t$ s rendimientos $$ 2I=I_t+I_t=\int_{t=0}^\infty\left(1+\frac{1}{t^2}\sqrt{\frac{b}{a}}\right)\exp\left(-a\left(t-\frac{1}{t}\sqrt{\frac{b}{a}}\right)^2\right)\,dt. $$ Sea $s=t-\frac{1}{t}\sqrt{\frac{b}{a}}\;\rightarrow\;ds=\left(1+\frac{1}{t^2}\sqrt{\frac{b}{a}}\right)dt$ y para $0<t<\infty$ corresponde a $-\infty<s<\infty$ entonces $$ I=\frac{1}{2}\int_{s=-\infty}^\infty e^{-as^2}\,ds=\frac{1}{2}\sqrt{\frac{\pi}{a}}, $$ donde $I$ es un Integral gaussiana . Así $$ \begin{align} \exp(-2\sqrt{ab})\int_{x=0}^\infty \exp\left(-a\left(x-\frac{1}{x}\sqrt{\frac{b}{a}}\right)^2\right)\,dx &=\large\color{blue}{\frac12\sqrt{\frac{\pi}{a}}e^{-2\sqrt{ab}}}. \end{align} $$ En nuestro caso, ponga $a=1$ y $b=a^2$ .

1voto

Felix Marin Puntos 32763

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\int_{0}^{\infty}\exp\pars{-\bracks{x^{2} + {a^{2} \over x^2}}}\,\dd x ={\root{\pi} \over 2}\,\expo{-2\verts{a}}:\ {\large ?}}$

\begin{align} &\color{#66f}{\large\int_{0}^{\infty}\exp\pars{-\bracks{x^{2} + {a^{2} \over x^2}}}\,\dd x}\ =\ \overbrace{\int_{0}^{\infty} \exp\pars{-\verts{a}\bracks{% {x^{2} \over \verts{a}} + {\verts{a} \over x^2}}}\,\dd x}^{\ds{x \equiv \root{\verts{a}}\expo{\theta}}} \\[3mm]&=\int_{-\infty}^{\infty}\expo{-2\verts{a}\cosh\pars{2\theta}} \root{\verts{a}}\expo{\theta}\,\dd\theta \\[3mm]&=\root{\verts{a}}\int_{-\infty}^{\infty} \expo{-2\verts{a}\bracks{2\sinh^{2}\pars{\theta} + 1}} \bracks{\cosh\pars{\theta} + \sinh\pars{\theta}}\,\dd\theta \\[3mm]&=\root{\verts{a}}\expo{-2\verts{a}}\ \overbrace{\int_{-\infty}^{\infty} \expo{-4\verts{a}\sinh^{2}\pars{\theta}}\cosh\pars{\theta}\,\dd\theta} ^{\ds{t\ \equiv\ \sinh\pars{\theta}}}\ =\root{\verts{a}}\expo{-2\verts{a}}\int_{-\infty}^{\infty} \expo{-4\verts{a}t^{2}}\,\dd t \\[3mm]&=\root{\verts{a}}\expo{-2\verts{a}}\,{1 \over 2\root{\verts{a}}}\ \overbrace{\int_{-\infty}^{\infty}\expo{-t^{2}}\,\dd t}^{\ds{=\ \root{\pi}}}\ =\ \color{#66f}{\Large{\root{\pi} \over 2}\,\expo{-2\verts{a}}} \end{align}

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X