Tenga en cuenta que
$C_r=\binom nr$.
Es bien conocido el resultado de que $\sum_{r=0}^n\binom nr^2=\binom {2n}n$, lo que puede ser comprobado fácilmente utilizando el Vandermonde de identidad.
Incluso para $n$:
El número de elementos es impar, el índice de $0$ a $(\frac n2-1)$, $n$, y de $(\frac n2+1)$ $n$
Desde $\binom nr=\binom n{n-r}$,$\sum_{r=0}^{\frac n2-1}\binom nr^2=\frac 12 \binom {2n}n$.
La suma en la pregunta puede ser escrito como
$$\begin{aligned}
&\begin{array}r
1\binom n0^2
&+3\binom n1 ^2
&+\cdots
&+(n-1)\binom n{\frac n2-1}^2\\
& & & & +(n+1) \binom n{\frac n2} ^2\\
+(2n+1)\binom nn^2
&+(2n-1)\binom n{n-1}^2
&+\cdots
&+(n+3)\binom n{\frac n2+1}^2
\\
=(2n+2)\binom n0^2
&+(2n+2)\binom n1^2
&+\cdots
&+(2n+2)\binom n{\frac n2-1}^2
&+(n+1)\binom n{\frac n2}^2
\\
\end{de la matriz}\\
Y=(2n+2)\cdot \displaystyle\sum_{i=0}^{\frac n2-1}\binom nr^2+(n+1)\binom n{\frac n2}\\
Y=(2n+2)\cdot \frac 12 \left[\displaystyle\sum_{i=0}^{n}\binom nr^2-\binom n{\frac n2}\right]+(n+1)\binom n{\frac n2}\\
&=(n+1)\left[\binom {2n}n-\binom n{\frac n2}\right]+(n+1)\binom n{\frac n2}\\
&=\color{red}{(n+1)\binom {2n}n}
\end{aligned}$$
__
Por extraño $n$:
El número de elementos es par, el índice de$0$$\frac {n-1}2$, y de $\frac {n+1}2$ $n$
Desde $\binom nr=\binom n{n-r}$,$\sum_{r=0}^\frac {n-1}2 \binom nr^2=\frac 12 \binom {2n}n$.
La suma en la pregunta puede ser escrito como
$$\begin{aligned}
&\begin{array}r
1\binom n0^2
&+3\binom n1 ^2
&+\cdots
&+n\binom n{\frac {n-1}2}^2\\
+(2n+1)\binom nn^2
&+(2n-1)\binom n{n-1}^2
&+\cdots
&+(n+2)\binom n{\frac {n+1}2}^2
\\
=(2n+2)\binom n0^2
&+(2n+2)\binom n1^2
&+\cdots
&+(2n+2)\binom n{\frac{n-1}2}^2\\
\end{de la matriz}\\
Y=(2n+2)\displaystyle\sum_{i=0}^{\frac {n-1}2}\binom nr^2\\
Y=(2n+2)\cdot \frac 12\displaystyle\sum_{i=0}^{n}\binom nr^2\\
Y=(2n+2)\cdot \frac 12 \binom {2n}n\\
&=\color{red}{(n+1)\binom {2n}n}
\end{aligned}$$