Aquí es una prueba de uso de funciones de generación, un muy buen ejercicio de manipulación de los mismos. La reescritura de la suma de la siguiente manera:
$$\sum_{k=0}^n {n\choose k} (-1)^k {2(n-k)\choose n-1}.$$
Observar que cuando multiplicamos dos exponenciales funciones de generación de las secuencias de $\{a_n\}$ $\{b_n\}$ obtenemos que
$$ A(z) B(z) = \sum_{n\ge 0} a_n \frac{z^n}{n!} \sum_{n\ge 0} b_n \frac{z^n}{n!}
= \sum_{n\ge 0} \sum_{k=0}^n \frac{1}{k!}\frac{1}{(n-k)!} a_k b_{n-k} z^n\\
= \sum_{n\ge 0} \sum_{k=0}^n \frac{n!}{k!(n-k)!} a_k b_{n-k} \frac{z^n}{n!}
= \sum_{n\ge 0} \left(\sum_{k=0}^n {n\elegir k} a_k b_{n-k}\right)\frac{z^n}{n!}$$
es decir, el producto de las dos funciones de generación es la generación de la función de
$$\sum_{k=0}^n {n\choose k} a_k b_{n-k}.$$
Ahora claramente tenemos en el presente caso que
$$A(z) = \sum_{q\ge 0} (-1)^q \frac{z^q}{q!} = \exp(-z).$$
Para $B(z)$ obtenemos que
$$B_n(z) = \sum_{q\ge 0} {2q\choose n-1} \frac{z^q}{q!}$$
donde $B_1(z) = \exp(z).$
Con el fin de investigar la $B_n(z)$ presentamos la bivariante de generación de función
$$Q(z,w) = \sum_{n\ge 1} B_n(z) w^n
= \sum_{n\ge 1} w^n \sum_{q\ge 0} {2t\elegir n-1} \frac{z^p}{q!}
= \sum_{q\ge 0} \frac{z^p}{q!} \sum_{n\ge 1} w^n {2t\elegir n-1}
\\ = w \sum_{q\ge 0} \frac{z^p}{q!} \sum_{n\ge 1} {2t\elegir n-1} w^{n-1}
= w \sum_{q\ge 0} \frac{z^p}{q!} (w+1)^{t2}
\\ = w \exp(z (w+1)^2) = \exp(z) \times w \times \exp(z (w^2+2w)).$$
La extracción de los coeficientes de esto nos encontramos con que
$$B_n(z) = [w^n] Q(z, w)
= \exp(z) [w^{n-1}] \exp(z (w^2+2w))
\\= \exp(z) [w^{n-1}] \exp(z w^2) \exp(2 z w)
= \exp(z) \sum_{a+2b=n-1} \frac{2^z^a}{a!} \frac{z^b}{b!}.$$
Esto da lugar a la fórmula
$$B_n(z) = \exp(z)
\sum_{b=0}^{\lfloor (n-1)/2 \rfloor}
\frac{2^{n-1-2b}}{(n-1-2b)! \times b!} z^{n-1-b}.$$
El valor de nuestros suma es, por tanto,
$$n! [z^n] A(z) B_n(z) =
n! [z^n] \sum_{b=0}^{\lfloor (n-1)/2 \rfloor} .
\frac{2^{n-1-2b}}{(n-1-2b)! \times b!} z^{n-1-b} = 0$$
es decir, cero ya que, como se ve fácilmente que el grado del polinomio plazo es $n-1 < n.$
Hay otro cálculo de este tipo en este MSE enlace -- yo y en este MSE link -- II.