La desigualdad en la cuestión de los límites de lo lejos que puede obtener de $1$ por la multiplicación de varios números complejos que individualmente pueden no estar lejos de $1$. Así que tiene sentido para tratar de obtener un obligado para el producto de sólo dos números complejos y, a continuación, proceder por inducción.
Lema: Supongamos $\lvert z_1 - 1\rvert = \alpha_1$$\lvert z_2 - 1\rvert = \alpha_2$. A continuación,$\lvert z_1 z_2 - 1\rvert \le (1 + \alpha_1)(1 + \alpha_2) - 1$.
Prueba: sabemos $\alpha_1\alpha_2 = \lvert z_1z_2 - z_1 - z_2 + 1\rvert$. Por el triángulo de la desigualdad en los tres puntos $z_1 z_2$, $z_1 + z_2 - 1$, y $1$, tenemos
$$\begin{align}
\lvert z_1 z_2 - 1\rvert &\le \lvert z_1 z_2 - z_1 - z_2 + 1\rvert + \lvert z_1 + z_2 - 2\rvert \\
&\le \alpha_1\alpha_2 + \alpha_1 + \alpha_2 \\
&= (1 + \alpha_1)(1 + \alpha_2) - 1.
\end{align}$$
Ahora, varios números,
$$\begin{align}
\lvert z_1 z_2 \cdots z_m - 1\rvert &\le (1 + \alpha_1)(1 + \alpha_{2,\ldots,m}) - 1 \\
&\le (1 + \alpha_1)(1 + \alpha_2)(1 + \alpha_{3,\ldots,m}) - 1 \\
&\vdots \\
&\le (1 + \alpha_1)(1 + \alpha_2)\cdots(1 + \alpha_m) - 1,
\end{align}$$ where $\alpha_{2,\ldots,m}$, for example, is my hopefully transparent abuse of notation to denote $\lvert z_2\cdots z_m - 1\rvert.$ Finally, since $1+x \le e^x$ for real $x$, la desigualdad de la siguiente manera.