5 votos

La métrica FRW y su validez a lo largo de la edad del universo

¿Por qué pensamos que la métrica FRW debería ser válida durante toda la historia del universo?

4voto

JRT Puntos 97

Nosotros no piensan que la métrica FLRW es válida durante toda la historia del universo.

Si tomamos una métrica de la forma

$$ ds^2 = -dt^2 + a^2(t) d\Sigma^2 $$

entonces esperamos que esto sea válido a lo largo de la historia del universo siempre y cuando el universo sea isotrópico y homogéneo. Sin embargo, tenemos que encontrar la ecuación de la función $a(t)$ Y esto es lo que hace la métrica FLRW. Relaciona $a(t)$ al contenido de materia/energía del universo y nos permite calcular la forma de $a(t)$ . Si le interesa, he calculado $a(t)$ para nuestro universo en mi respuesta a ¿Cómo cambia el parámetro de Hubble con la edad del universo? .

Sin embargo, el cálculo hace suposiciones sobre el contenido de materia/energía. En particular, asume que sólo hay que considerar tres tipos de energía/materia:

  1. materia relativista y radiación

  2. materia normal del día a día

  3. la constante cosmológica

La forma en que las densidades de estos tres componentes escalan con el tamaño del universo determina la forma de $a(t)$ . La materia relativista y la radiación dominan en los primeros tiempos, la materia normal domina en los tiempos intermedios y la constante cosmológica domina en los tiempos largos. Nuestro universo pasó de estar dominado por la materia a estarlo por la energía oscura entre 6.000 y 8.000 millones de años después del Big Bang.

Pero...

Esperamos que haya otros factores que afecten a la densidad energética global. Por ejemplo, la mayoría de los cosmólogos creen que hubo un período inflacionario a partir de $10^{-36}$ segundos después del Big Bang. Esto fue impulsado por una fuente aún no identificada llamada campo de inflatón . El campo inflatón no está incluido en la métrica FLRW, por lo que la métrica FLRW pasa por alto la inflación.

Otra posibilidad más controvertida es que la energía oscura dependa del tiempo, en cuyo caso se suele denominar quintaesencia . En ese caso, la suposición de una densidad de energía oscura constante no es válida, y la métrica FLRW no podrá describir el universo durante la fase dominada por la energía oscura.

Pero posiblemente estoy siendo un poco duro con los señores Friedmann, Lemaître, Robertson y Walker porque la forma general de su métrica seguirá siendo válida. Sólo que hay que incluir componentes adicionales en la densidad de materia/energía que eran desconocidos en su época. La métrica de Friedmann, Lemaître, Robertson, Walker y Rennie $^1$ que sí incluye todos los componentes que alguna vez afectarán a la densidad de materia/energía será válida durante toda la historia del universo.


$^1$ un trabajo en curso

4 votos

Creo que tendrías más suerte probando las ecuaciones de Friedmann-Rennie (o incluso mejor la solución de Rennie a las ecuaciones de Friedmann) en lugar de la métrica FLRWR ya que, como dices, la métrica está bien, es la densidad de energía y la solución correspondiente $a(t)$ que cambiará.

3voto

Kyle Oman Puntos 9668

La métrica F(L)RW viene con muy pocas suposiciones, aunque éstas son bastante fuertes:

  • El espacio-tiempo es homogéneo.
  • El espacio-tiempo es isotrópico.

O, en otras palabras, el principio cosmológico se asume. Desde el punto de vista filosófico, esto es muy deseable, ya que la noción de que hay lugares o direcciones preferidas en el Universo es, desde un punto de vista moderno, algo repulsivo. Además, nuestra capacidad para entender la física del Universo depende en gran medida de que el principio cosmológico se mantenga, por lo que quiere para que se mantenga. Afortunadamente, las observaciones parecen apuntar a la homogeneidad e isotropía en escalas "suficientemente grandes". Y no es que ignoremos cualquier desviación de la homogeneidad e isotropía perfectas; sabemos cómo evolucionar las perturbaciones lineales (analíticamente) y las no lineales (numéricamente) sobre una métrica F(L)RW de fondo. Utilizando esta maquinaria perturbadora, podemos trabajar con diferentes modelos del Universo.

En cualquier modelo F(L)RW que consideremos realista, las desviaciones de la homogeneidad y la isotropía tienden a crecer con el tiempo, así que si afirmamos que el principio cosmológico se mantiene ahora (lo suficientemente bien como para que podamos usar F(L)RW + perturbaciones para obtener un modelo que funcione), implícitamente afirmamos que se mantiene en el tiempo al menos hasta la inflación. Y si estamos en lo cierto y estamos entrando en una época dominada por la energía oscura, el principio cosmológico seguirá siendo válido en el futuro (bastante largo) previsible.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X