La respuesta por user111187 es la forma más limpia para el planteamiento de dicho problema. Voy a elaborar en las cantidades (que no se muestran).
$$I = (-)\cdot\int_{0}^{1} \frac{\log(1-x)\log^2(x) dx}{1-x}$$
Deje $u = 1-x \implies du = -dx$
$$I = -\int_{0}^{1} \frac{\log(u)\log^2(1-u) du}{u}$$
$$\sum_{n=1}^{\infty} H_n u^n = -\frac{\log(1-u)}{1-u}$$
$$\sum_{n=1}^{\infty} \frac{H_nu^{n+1}}{n+1} = \frac{\log^2(1-u)}{2}$$
$$(2)\cdot\sum_{n=1}^{\infty} \frac{H_n\log(u)\cdot u^{n}}{n+1} = \frac{\log^2(1-u)\log(u)}{u}$$
$$(-2)\cdot \sum_{n=1}^{\infty}\frac{H_n}{n+1}\cdot \int_{0}^{1} \log(u) \cdot u^{n} du = \int_{0}^{1} \frac{\log^2(1-u)\log(u)}{u} du = I$$
Para la integral en el lado izquierdo, que simplemente usamos la regla de Leibniz considerando $\displaystyle J(n) = \int_{0}^{1} u^n du$ luego se diferencian.
$$(2)\cdot \sum_{n=1}^{\infty}\frac{H_n}{(n+1)^3} = \int_{0}^{1} \frac{\log^2(1-u)\log(u)}{u} du = I$$
$$H_n = H_{n-1} + \frac{1}{n} \implies H_{n+1} = H_{n} + \frac{1}{n+1} \implies H_n = H_{n+1} - \frac{1}{n+1}$$
$$ = (2)\cdot \sum_{n=1}^{\infty}\frac{H_{n+1}}{(n+1)^3} - (2)\cdot\sum_{n=1}^{\infty} \frac{1}{(n+1)^4}$$
$$ = (2)\cdot \sum_{n=2}^{\infty} \frac{H_{n}}{n^3} - (2)\cdot\sum_{n=2}^{\infty} \frac{1}{n^4}$$
$$ = (2)\cdot \left( \sum_{n=1}^{\infty} \frac{H_{n}}{n^3} - 1 \right) - (2) \cdot \left( \sum_{n=1}^{\infty} \frac{1}{n^4} - 1 \right)$$
Desde Generalizada De Euler Suma
$$ = (2)\cdot \left( \left(1 + \frac{3}{2} \right)\zeta(4) - \frac{1}{2}\zeta^2(2) - 1 \right) - 2\zeta(4) + 2$$
$$ = 5\zeta(4) - \zeta^2(2) - 2 - 2\zeta(4) + 2 = 3\zeta(4) - \zeta^2(2) = \frac{\pi^4}{180}$$
Finalmente,
$$I = \int_{0}^{1} \frac{\log(1-x)\log^2(x) \space dx}{x-1} = \frac{\pi^4}{180}$$