Algunas fórmula para calcular la probabilidad de que la diferencia entre el número de $6$ y el promedio de seleccionado accidentalmente $100$ puntos entre los $10000$ puntos que se distribuyen en el intervalo de $[2,8]$ con distancias iguales, no es más que $0.05$; llevar a esta suma:
$$\sum_{r=493701}^{506199}\sum_{k=0}^{100}(-1)^k\frac{\binom{100}{k}\binom{r-10001k+99}{99}}{\binom{r+99}{r}}$$
It seems that if $r-10001k+99$ is negative then $\binom{r-10001k+99}{99}$ is to be considered zero. btw, it may not be important if there is a calculator or a way that can deal with the sum; then I will correct the details. I tried to calculate it in Wolframalpha with this command:
Sum[Sum[((-1)^k)*Binomial[100,k]*Binomial[r-10001*k+99,99]/Binomial[r+99,r],{k,1,100}],{r,493701,506199}]
But it didn't show me any result. Online Sage seems to be out of access for my internet connection. Is there any other way to calculate or estimate the result of these iterated sums?
Also I tested gap with:
sign:= function(n)
if n < 0 then
return 0;
elif n = 0 then
return 0;
else
return 1;
fi;
end;
Sum([493701..506199],r->Sum([0..100],k->((-1)^k)*Binomial(100,k)*Binomial(r-10001*k+99,99)*sign(r-10001*k+99)/Binomial(r+99,r)));
and the result:
<integer 714...349 (28661 digits)>/<integer 547...000 (28670 digits)>
Edit: Clément Guérin's answer suggests to write:
$$\sum_{r=493701}^{506199}\sum_{k=0}^{100}(-1)^k\frac{\binom{100}{k}\binom{r-10001k+99}{99}}{\binom{r+99}{r}} = \sum_{k=0}^{100}(-1)^k\binom{100}{k}\sum_{r=493701}^{506199}\frac{\binom{r-10001k+99}{99}}{\binom{r+99}{r}} = \sum_{k=0}^{100}(-1)^k\binom{100}{k}\sum_{r=493701}^{506199}\prod_{s=1}^{99}\left(1-\frac{10001k}{r+s} \right) $$ Pero yo no podía dar esta a Wolfram. De hecho, uno debe calcular $$ \sum_{k=0}^{100}(-1)^k\binom{100}{k}\sum_{r=493701}^{506199}\prod_{s=1}^{99}\left(1-\frac{10001k}{r+s} \right)\frac{sgn(r-10001k+99)+1}{2}.$$