$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\sum_{j = 0}^{M}{{M \elegir j} \over {N + M \elegir j}} =
{N + M + 1 \sobre N + 1}:\ {\LARGE ?}}$.
\begin{align}
\sum_{j = 0}^{M}{{M \choose j} \over {N + M \choose j}} & =
\sum_{j = 0}^{M}{M!/\bracks{j!\pars{M - j}!} \over
\pars{N + M}!/\bracks{j!\pars{N + M - j}!}}
\\[5mm] & =
{M!\, N! \over \pars{N + M}!}\sum_{j = 0}^{M}
{N + M - j \choose M - j}
\\[5mm] & =
{M!\, N! \over \pars{N + M}!}\pars{-1}^{M}
\sum_{j = 0}^{M}\pars{-1}^{j}
\bracks{z^{M - j}}\pars{1 + z}^{-N - 1}
\\[5mm] & =
{M!\, N! \over \pars{N + M}!}\pars{-1}^{M}
\bracks{z^{M}}\pars{1 + z}^{-N - 1}\,
{\pars{-z}^{M + 1} - 1 \over \pars{-z} - 1}
\\[5mm] & =
{M!\, N! \over \pars{N + M}!}\pars{-1}^{M}
\bracks{z^{M}}\pars{1 + z}^{-N - 2}
\\[5mm] & =
{M!\, N! \over \pars{N + M}!}\pars{-1}^{M}
\braces{{-\bracks{-N - 2} + M - 1 \choose M}\pars{-1}^{M}}
\\[5mm] & = \bbx{N + M + 1 \over N + 1}
\end{align}