4 votos

Cómo calcular$\lim\limits_{x\to 0}\dfrac{e^{f(x)}-e^x}{2x-\sin\left( f(2x) \right)}$

Deje $f:\mathbb{R}\longrightarrow \mathbb{R}$ una función tal que : $f(x)=x-x^3+o(x^3).$

Calcular $$ \lim\limits_{x\to 0}\dfrac{e^{f(x)}-e^x}{2x-\sin\left( f(2x) \right)}$$

Mis pensamientos:

tenga en cuenta que :

  • $e^{x}=1+x+\dfrac{x^2}{2}+\dfrac{x^3}{6}+o(x^3)$
  • $\sin(x)=x-\dfrac{x^3}{6}+o(x^3)$
  • $e^{f(x)}=1+f(x)+\dfrac{f(x)^2}{2}+\dfrac{f(x)^3}{6}+o(f(x)^3)$
  • $\sin(f(2x))=f(2x)-\dfrac{f(2x)^3}{6}+o(x^3)$
  • $f(x)=x-x^3+o(x^3)$
  • $f(2x)=2x-8x^3+o(x^3)$

de hecho, \begin{align} e^{f(x)}&=1+f(x)+\dfrac{f(x)^2}{2}+\dfrac{f(x)^3}{6}+o(f(x)^3)\\ &=1+\left(x-x^3+o(x^3) \right)+\dfrac{\left(x-x^3+o(x^3) \right)^2}{2}+\dfrac{\left(x-x^3+o(x^3) \right)^3}{6}+o(x^3)\\ &=1+\left(x-x^3+o(x^3) \right)+\dfrac{\left(x-x^3+o(x^3) \right)^2}{2}+\dfrac{\left(x-x^3+o(x^3) \right)^3}{6}+o(x^3)\\ \end{align} o

$\left(x-x^3+o(x^3) \right)^2=(x^{2}-2x^{4}+x^{6} )+o(x^3)=x^{2}+o(x^3) $ \begin{align} \left(x-x^3+o(x^3) \right)^3&=(x-x^{3}+o(x^3))(x-x^{3}+o(x^3))^2=(x-x^{3}+o(x^3))(x^{2}+o(x^3))\\ &=x^3+o(x^3) \end{align} sustituimos los valores en $e^{f(x)}$

\begin{align} e^{f(x)}&=1+\left(x-x^3+o(x^3) \right)+\dfrac{\left(x-x^3+o(x^3) \right)^2}{2}+\dfrac{\left(x-x^3+o(x^3) \right)^3}{6}+o(x^3)\\ &=1+\left(x-x^3+o(x^3) \right)+\dfrac{ x^{2}+o(x^3)}{2}+\dfrac{x^3+o(x^3)}{6}+o(x^3)\\ e^{f(x)}&=1+x+\dfrac{x^2}{2}+\dfrac{x^3}{6}-x^3+o(x^3) \end{align} entonces \begin{align} e^{f(x)}-e^{x}&=1+x+\dfrac{x^2}{2}+\dfrac{x^3}{6}-x^3+o(x^3)-e^{x}\\ &=1+x+\dfrac{x^2}{2}+\dfrac{x^3}{6}-x^3+o(x^3)-(1+x+\dfrac{x^2}{2}+\dfrac{x^3}{6}+o(x^3))\\ &=1+x+\dfrac{x^2}{2}+\dfrac{x^3}{6}-x^3+o(x^3)-1-x-\dfrac{x^2}{2}-\dfrac{x^3}{6}+o(x^3))\\ e^{f(x)}-e^{x}&=-x^{3}+o(x^3) \end{align}

$$\fbox{$e^{f(x)}-e^{x}=-x^{3}+o(x^3)$}$$

\begin{align} \sin(f(2x))&=\left(2x-8x^3+o(x^3)\right)-\dfrac{\left(2x-8x^3+o(x^3)\right)^3}{6}+o(x^3)\\ \end{align} o $\left(2x-8x^3+o(x^3)\right)^3=(8x^{3}\left(1-4x^{2}\right)+o(x^3)=8x^{3}+o(x^3) $

entonces \begin{align} \sin(f(2x))&=\left(2x-8x^3+o(x^3)\right)-\dfrac{\left(2x-8x^3+o(x^3)\right)^3}{6}+o(x^3)\\ &=\left(2x-8x^3+o(x^3)\right)-\dfrac{8x^{3}+o(x^3)}{6}+o(x^3)\\ &=2x-8x^3-\dfrac{8x^{3}}{6}+o(x^3)\\ &=2x-\dfrac{28x^{3}}{3}+o(x^3)\\ \end{align}

$$\fbox{$2x-\sin(f(2x))=\dfrac{28x^{3}}{3}+o(x^3))$}$$

\begin{align} \dfrac{e^{f(x)}-e^x}{2x-\sin\left(f(2x)\right)}&=\dfrac{-x^{3}+o(x^3)}{\dfrac{28x^{3}}{3}+o(x^3)}=-\dfrac{-3}{28}+o(x^3)\\ \end{align}

$$\lim\limits_{x\to 0}\dfrac{e^{f(x)}-e^x}{2x-\sin\left( f(2x) \right)}=\dfrac{-3}{28}$$

  • Es mi prueba correcta
  • Por favor, si encuentras cualquier error de tratar de corregir con los detalles de los cálculos

1voto

tired Puntos 4097

Necesitamos lo siguiente:

Como se calcula correctamente, el numerador es

$e^{f(x)}-e^x=-x^3+o(x^3)$

pero el denumerator es $$ 2x-\sin(2f(x))=2x-\left(2f(x)-\frac{2^3}{3!}f^3(x)+o(f^3(x))\right)=2x-\left(2x-\textbf{2}x^3-\frac{4}{3}x^3+o(x^3)\right)=\frac{10}{3}x^3+o(x^3) $$

donde se utilizó $f^3(x)=x^3+o(x^3)$

La fusión de ambos resultados en conjunto de los rendimientos de $$ \lim_{x\rightarrow0}\frac{e^{f(x)}-e^x}{2x-2\sin(f(x))}=\frac{-3}{10} $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X