$\lim_{x \to 0} (\cot (2x)\cot (\frac{\pi }{2}-x))$
No puedo llegar al final de este límite. Esto es lo que he calculado:
\begin{align*} & \lim_{x \to 0} \frac{\cos 2x}{\sin 2x}\cdot\frac{\cos(\frac{\pi }{2}-x )}{\sin(\frac{\pi }{2}-x )} \lim_{x \to 0}\frac{\frac{\cos2x }{2x}}{\frac{\sin 2x}{2x}}\cdot \frac{\cos(\frac{\pi }{2}-x )}{\sin(\frac{\pi }{2}-x )} = \lim_{x \to 0} \frac{\cos 2x}{2x} \cdot \frac{\cos(\frac{\pi }{2}-x )}{\sin(\frac{\pi }{2}-x )} \\ = & \lim_{x \to 0} \frac{{\cos^2 (x)}-{sin^2 (x)}}{2x}\cdot\frac{\cos(\frac{\pi }{2}-x )}{\sin(\frac{\pi }{2}-x )} = \lim_{x \to 0} \left(\frac{\cos^2(x)}{2x}-\frac{sin^2 x}{2x}\right)\cdot \frac{\cos(\frac{\pi }{2}-x )}{\sin(\frac{\pi }{2}-x )} \\ = & \lim_{x \to 0} \left(\frac{1-\sin^2 x}{2x}-\frac{sin x}{2}\right)\cdot \frac{\cos(\frac{\pi }{2}-x )}{\sin(\frac{\pi }{2}-x )} = \lim_{x \to 0} \left(\frac{1}{2x}-\frac{\sin^2 x}{2x}-\frac{sin x}{2}\right) \cdot \frac{\cos(\frac{\pi }{2}-x )}{\sin(\frac{\pi }{2}-x )} \\ = & \lim_{x \to 0} \left(\frac{1}{2x}-\frac{\sin x}{2}-\frac{sin x}{2}\right)\cdot \frac{\cos(\frac{\pi }{2}-x )}{\sin(\frac{\pi }{2}-x )} = \lim_{x \to 0} \left(\frac{1}{2x}-2\frac{\sin x}{2}\right)\cdot \frac{\cos(\frac{\pi }{2}-x )}{\sin(\frac{\pi }{2}-x )} \\ = & \lim_{x \to 0} \left(\frac{1}{2x}-\sin x\right)\cdot \frac{\cos(\frac{\pi }{2}-x )}{\sin(\frac{\pi }{2}-x )} \end{align*}
Aquí es donde parece que no puedo completar el límite, el 2x en el denominador me está dando problemas y no sé cómo deshacerme de él. Cualquier ayuda se agradecería. (En las preguntas anteriores me lo pusieron muy difícil por mi falta de contexto, espero que esta siga las reglas del sitio. Lo he intentado).