Tengo que probar esto (un combinatorally la prueba, contando con un conjunto de dos maneras diferentes):
$$\sum_{i=1}^n\sum_{j=1}^n\mathrm{min}(i,j)=\sum_{k=1}^nk^2 .$$
Esto es lo que he hecho: tomar el conjunto $$\{(x_1,x_2,x_3)\in\mathbb{Z}^3:1\leq x_1, x_2 \leq k, x_3=k, k=1,\ldots,n\}.$$ This set consists of $n$ squares with increasing side. I noticed that if you count the set adding the points diagonally square by square, you get the formula with the minimum. I mean if $n=3$, then the diagonals with $1$ point are $5$, the diagonals with $2$ points are $3$ and the diagonal with $3$ points is $1$, so you have $$1+1+1+1+1+2+2+2+3.$$ Pero no puedo formalizar que, me podrían ayudar por favor?