Esto significa que este problema de Cauchy ya no puede ser resuelto por la transformada de Fourier.
Por lo tanto, debe utilizar la separación de variables:
Dejemos que $u(t,x)=T(t)X(x)$ ,
Entonces $T''(t)X(x)-T(t)X''''(x)=0$
$T''(t)X(x)=T(t)X''''(x)$
$\dfrac{T''(t)}{T(t)}=\dfrac{X''''(x)}{X(x)}=s^4$
$\begin{cases}T''(t)-s^4T(t)=0\\X''''(x)-s^4X(x)=0\end{cases}$
$\begin{cases}T(t)=\begin{cases}c_1(s)\sinh ts^2+c_2(s)\cosh ts^2&\text{when}~s\neq0\\c_1t+c_2&\text{when}~s=0\end{cases}\\X(x)=\begin{cases}c_3(s)\sinh xs+c_4(s)\cosh xs+c_5(s)\sin xs+c_6(s)\cos xs&\text{when}~s\neq0\\c_3x^3+c_4x^2+c_5x+c_6&\text{when}~s=0\end{cases}\end{cases}$
$\therefore u(t,x)=\int_0^\infty C_1(s)\sinh ts^2\sinh xs~ds+\int_0^\infty C_2(s)\sinh ts^2\cosh xs~ds+\int_0^\infty C_3(s)\sinh ts^2\sin xs~ds+\int_0^\infty C_4(s)\sinh ts^2\cos xs~ds+\int_0^\infty C_5(s)\cosh ts^2\sinh xs~ds+\int_0^\infty C_6(s)\cosh ts^2\cosh xs~ds+\int_0^\infty C_7(s)\cosh ts^2\sin xs~ds+\int_0^\infty C_8(s)\cosh ts^2\cos xs~ds$
$u_t(t,x)=\int_0^\infty s^2C_1(s)\cosh ts^2\sinh xs~ds+\int_0^\infty s^2C_2(s)\cosh ts^2\cosh xs~ds+\int_0^\infty s^2C_3(s)\cosh ts^2\sin xs~ds+\int_0^\infty s^2C_4(s)\cosh ts^2\cos xs~ds+\int_0^\infty s^2C_5(s)\sinh ts^2\sinh xs~ds+\int_0^\infty s^2C_6(s)\sinh ts^2\cosh xs~ds+\int_0^\infty s^2C_7(s)\sinh ts^2\sin xs~ds+\int_0^\infty s^2C_8(s)\sinh ts^2\cos xs~ds$
$u_t(0,x)=0$ :
$\int_0^\infty s^2C_1(s)\sinh xs~ds+\int_0^\infty s^2C_2(s)\cosh xs~ds+\int_0^\infty s^2C_3(s)\sin xs~ds+\int_0^\infty s^2C_4(s)\cos xs~ds=0$
$\int_0^\infty s^2C_3(s)\sin xs~ds=-\int_0^\infty s^2C_1(s)\sinh xs~ds-\int_0^\infty s^2C_2(s)\cosh xs~ds-\int_0^\infty s^2C_4(s)\cos xs~ds$
$\mathcal{F}_{s,s\to x}\{s^2C_3(s)\}=-\int_0^\infty s^2C_1(s)\sinh xs~ds-\int_0^\infty s^2C_2(s)\cosh xs~ds-\mathcal{F}_{c,s\to x}\{s^2C_4(s)\}$
$C_3(s)=-\dfrac{\mathcal{F}^{-1}_{s,x\to s}\{\int_0^\infty s^2C_1(s)\sinh xs~ds\}}{s^2}-\dfrac{\mathcal{F}^{-1}_{s,x\to s}\{\int_0^\infty s^2C_2(s)\cosh xs~ds\}}{s^2}-\dfrac{\mathcal{F}^{-1}_{s,x\to s}\{\mathcal{F}_{c,s\to x}\{s^2C_4(s)\}\}}{s^2}$
$\therefore u(t,x)=\int_0^\infty C_1(s)\sinh ts^2\sinh xs~ds+\int_0^\infty C_2(s)\sinh ts^2\cosh xs~ds+\int_0^\infty C_4(s)\sinh ts^2\cos xs~ds-\int_0^\infty\dfrac{\mathcal{F}^{-1}_{s,x\to s}\{\int_0^\infty s^2C_1(s)\sinh xs~ds\}\sinh ts^2\sin xs}{s^2}ds-\int_0^\infty\dfrac{\mathcal{F}^{-1}_{s,x\to s}\{\int_0^\infty s^2C_2(s)\cosh xs~ds\}\sinh ts^2\sin xs}{s^2}ds-\int_0^\infty\dfrac{\mathcal{F}^{-1}_{s,x\to s}\{\mathcal{F}_{c,s\to x}\{s^2C_4(s)\}\}\sinh ts^2\sin xs}{s^2}ds+\int_0^\infty C_5(s)\cosh ts^2\sinh xs~ds+\int_0^\infty C_6(s)\cosh ts^2\cosh xs~ds+\int_0^\infty C_7(s)\cosh ts^2\sin xs~ds+\int_0^\infty C_8(s)\cosh ts^2\cos xs~ds$
$u(0,x)=f(x)$ :
$\int_0^\infty C_5(s)\sinh xs~ds+\int_0^\infty C_6(s)\cosh xs~ds+\int_0^\infty C_7(s)\sin xs~ds+\int_0^\infty C_8(s)\cos xs~ds=f(x)$
$\int_0^\infty C_7(s)\sin xs~ds=f(x)-\int_0^\infty C_5(s)\sinh xs~ds-\int_0^\infty C_6(s)\cosh xs~ds-\int_0^\infty C_8(s)\cos xs~ds$
$\mathcal{F}_{s,s\to x}\{C_7(s)\}=f(x)-\int_0^\infty C_5(s)\sinh xs~ds-\int_0^\infty C_6(s)\cosh xs~ds-\mathcal{F}_{c,s\to x}\{C_8(s)\}$
$C_7(s)=\mathcal{F}^{-1}_{s,x\to s}\{f(x)\}-\mathcal{F}^{-1}_{s,x\to s}\{\int_0^\infty C_5(s)\sinh xs~ds\}-\mathcal{F}^{-1}_{s,x\to s}\{\int_0^\infty C_6(s)\cosh xs~ds\}-\mathcal{F}^{-1}_{s,x\to s}\{\mathcal{F}_{c,s\to x}\{C_8(s)\}\}$
$\therefore u(t,x)=\int_0^\infty C_1(s)\sinh ts^2\sinh xs~ds+\int_0^\infty C_2(s)\sinh ts^2\cosh xs~ds+\int_0^\infty C_4(s)\sinh ts^2\cos xs~ds-\int_0^\infty\dfrac{\mathcal{F}^{-1}_{s,x\to s}\{\int_0^\infty s^2C_1(s)\sinh xs~ds\}\sinh ts^2\sin xs}{s^2}ds-\int_0^\infty\dfrac{\mathcal{F}^{-1}_{s,x\to s}\{\int_0^\infty s^2C_2(s)\cosh xs~ds\}\sinh ts^2\sin xs}{s^2}ds-\int_0^\infty\dfrac{\mathcal{F}^{-1}_{s,x\to s}\{\mathcal{F}_{c,s\to x}\{s^2C_4(s)\}\}\sinh ts^2\sin xs}{s^2}ds+\int_0^\infty C_5(s)\cosh ts^2\sinh xs~ds+\int_0^\infty C_6(s)\cosh ts^2\cosh xs~ds+\int_0^\infty C_8(s)\cosh ts^2\cos xs~ds+\int_0^\infty\mathcal{F}^{-1}_{s,x\to s}\{f(x)\}\cosh ts^2\sin xs~ds-\int_0^\infty\mathcal{F}^{-1}_{s,x\to s}\{\int_0^\infty C_5(s)\sinh xs~ds\}\cosh ts^2\sin xs~ds-\int_0^\infty\mathcal{F}^{-1}_{s,x\to s}\{\int_0^\infty C_6(s)\cosh xs~ds\}\cosh ts^2\sin xs~ds-\int_0^\infty\mathcal{F}^{-1}_{s,x\to s}\{\mathcal{F}_{c,s\to x}\{C_8(s)\}\}\cosh ts^2\sin xs~ds$
1 votos
Mathematica debería estar equivocado en este caso - de hecho está claro que la integral ni siquiera converge.