∫π/2−π/2cos(x)1+exdx∫π/2−π/2cos(x)1+exdx
Usando integración por partes
∫uv=u∫v−∫u′∫v
u(x)=cos(x) y v(x)=11+ex,
$$ u \int{-\pi/2}^{\pi/2} v dx = \left[ \cos(x) \int{-\pi/2}^{\pi/2} \frac{1}{1+e^x} dx \right]{-\pi/2}^{\pi/2} = \left[ \cos(x) ( x - log(1+e^x) \right]{-\pi/2}^{\pi/2} $$
$$ \int{-\pi/2}^{\pi/2} u' \left( \int{-\pi/2}^{\pi/2} v dx \right) dx = \int{-\pi/2}^{\pi/2} -\sin(x) \int{-\pi/2}^{\pi/2} \frac{1}{1+e^x} dx $$
$$ = \int{-\pi/2}^{\pi/2} -\sin(x) \left[ ( x - log(1+e^x) \right]{-\pi/2}^{\pi/2} $$
¿Corta de seguir ad nauseam, hay una mejor manera para determinar la respuesta (dada como 1)?