$$ \int_{-\pi/2}^{\pi/2} \frac{\cos(x)}{1+e^x} dx$$
Usando integración por partes
$$\int u v = u \int v - \int u' \int v$$
$u(x) = \cos(x)$ y $v(x) = \frac{1}{1+e^x}$,
$$ u \int{-\pi/2}^{\pi/2} v dx = \left[ \cos(x) \int{-\pi/2}^{\pi/2} \frac{1}{1+e^x} dx \right]{-\pi/2}^{\pi/2} = \left[ \cos(x) ( x - log(1+e^x) \right]{-\pi/2}^{\pi/2} $$
$$ \int{-\pi/2}^{\pi/2} u' \left( \int{-\pi/2}^{\pi/2} v dx \right) dx = \int{-\pi/2}^{\pi/2} -\sin(x) \int{-\pi/2}^{\pi/2} \frac{1}{1+e^x} dx $$
$$ = \int{-\pi/2}^{\pi/2} -\sin(x) \left[ ( x - log(1+e^x) \right]{-\pi/2}^{\pi/2} $$
¿Corta de seguir ad nauseam, hay una mejor manera para determinar la respuesta (dada como $1$)?